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A B S T R A C T

Pansharpening is a crucial technique in remote sensing for enhancing spatial resolution by fusing low
spatial resolution multispectral (LRMS) images with high spatial panchromatic (PAN) images. Existing deep
convolutional networks often face challenges in capturing fine details due to the homogeneous operation
of convolutional kernels. In this paper, we propose a novel predictive filtering approach for pansharpening
to mitigate spectral distortions and spatial degradations. By obtaining predictive filters through the fusion
of LRMS and PAN and conducting filtering operations using unique kernels assigned to each pixel, our
method reduces information loss significantly. To learn more effective kernels, we propose an effective
fine-grained fusion method for LRMS and PAN features, namely element-wise feature mixing. Specifically,
features of LRMS and PAN will be exchanged under the guidance of a learned mask. The value of the mask
signifies the extent to which the element will be mixed. Extensive experimental results demonstrate that
the proposed method achieves better performances than the state-of-the-art models with fewer parameters
and lower computations. Visual comparisons indicate that our model pays more attention to details, which
further confirms the effectiveness of the proposed fine-grained fusion method. Codes are available at https:
//github.com/yc-cui/PreMix.
1. Introduction

Due to technological and physical constraints, the spatial resolution
of images provided by various imaging sensors is often limited with
respect to their spectral resolution. Numerous orbiting satellites, such
as IKONOS, QuickBird, GaoFen, etc., are capable of simultaneously
providing panchromatic images and multispectral images. Generally,
multispectral images contain multiple bands with abundant spectral
information. In contrast, single-band panchromatic images have richer
spatial details compared to multispectral images. Pansharpening aims
at fusing panchromatic (PAN) images and low spatial resolution mul-
tispectral (LRMS) images to obtain high spatial and spectral resolution
(HRMS) images.

In recent years, pansharpening based on deep learning (DL) have
demonstrated notably superior performance compared to traditional
approaches. Thanks to the nonlinear fitting capabilities of deep neural
networks, HRMS obtained through deep nonlinear transformation and
automatic parameter updating often exhibits higher quality than man-
ual feature extraction or constraint formulation. Most of the existing
DL-based neural networks used for pansharpening generally perform
feature extraction and transformation on the input degraded image, and
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directly obtain the predicted pixels, as shown in Fig. 1(a). However, the
direct strategy has shown to be suboptimal, and leads to issues such as
slow convergence and increased errors (Bako et al., 2017). Particularly
in the context of remote sensing imagery, the datasets encapsulate
intricate ground object information with rich spectral and spatial de-
tails. Employing the direct strategy may suffer from severe information
loss, consequently impacting the precision of the pansharpening results.
In contrast, predictive filtering (Bako et al., 2017) does not directly
synthesize the pixels of the image to be predicted, but first predicts a
convolution kernel for each pixel. Then the original degraded image
is filtered using the predictive kernels, thereby indirectly obtaining
the image to be predicted. The illustration of how predictive filtering
works is shown in Fig. 1(b). The predictive filtering technique has
been applied to a variety of low-level vision tasks (Bako et al., 2017;
Mildenhall et al., 2018; Xia et al., 2020; Guo et al., 2021b; Cho et al.,
2021; Fu et al., 2021; Guo et al., 2021a; Li et al., 2022b) and proven
successful.

This paper investigates the application of predictive filtering tech-
nique for pansharpening. We attempt to learn predictive kernels for
LRMS and PAN simultaneously and filter them to generate HRMS.
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Fig. 1. Comparison of direct prediction network and kernel prediction network. The
kernel prediction network employs predictive filtering to indirectly generate predicted
pixels.

Fig. 2. Demonstration of the characteristics of the proposed model. The bright
rectangular box represents the area zoomed in for display. (a)–(c) Prediction of different
models. (e)–(f) The corresponding mean absolute error between the prediction and the
ground truth.

The proposed model aims to minimize information loss compared to
the deep nonlinear transformation of LRMS and PAN, thus reducing
spatial degradations and spectral distortions. To demonstrate the effec-
tiveness of our approach, we present a representative example of our
fused result with comparison to two DL-based state-of-the-art (SOTA)
23 
methods, i.e.., SFINet (Zhou et al., 2022b) and MDCUN (Yang et al.,
2022). Clearly, the fused outputs from SFINet (Zhou et al., 2022b)
and MDCUN (Yang et al., 2022) show different levels of local spatial
structure degradation and inaccurate reconstruction result, whereas our
proposed model achieves a lower reconstruction error.

Our method demonstrates superiority due to the introduction of
a fine-grained feature fusion approach, namely element-wise feature
mixing (EWFM). Inspired by the customized kernel strategy of predictive
filtering, EWFM utilizes a guiding mask to perform element exchange
operations on the features of LRMS and PAN flow. We prove that
this fusion strategy is actually equivalent to customizing a dynamically
changing convolution kernel for each element in the feature map,
akin to predictive filtering. Instead of convolving the entire feature
map using a single same group of convolutional kernels as in regular
convolution, EWFM utilizes a kernel-wise attention mechanism to assign
a dynamic convolutional kernel to each element. We also proposed a
multi-scale and multi-branch progressive filtering network to conduct
multiple filtering to further improve the performance of pansharpening.
Specifically, we leverage the histogram equalization and high pass
filtering on LRMS and PAN as additional branches, conducting pro-
gressive predictive filtering across multiple resolution scales. Extensive
experimental results show that this fully kernel-customized network
outperforms SOTA DL-based models with reduced parameters and com-
putations at both simulated reduced-resolution data and real-world
full-resolution data.

In summary, our contributions are as follows:

• We explore predictive filtering for remote sensing multispectral
and panchromatic image fusion for the first time.

• In order to predict effective filtering kernels, we propose a fine-
grained feature fusion strategy. To obtain a more accurate re-
sult, We also propose a multi-scale and multi-branch progressive
filtering model.

• We conducted extensive experiments, including numerous com-
parative analyses, ablation studies, and parameter analyses, using
a variety of satellite data from GaoFen-1, WorldView-2, and
IKONOS. The qualitative and quantitative results demonstrate
that the model presented in this paper outperforms other models
at both simulated and real data.

The remainder of this paper is organized as follows: Section 2
provides a review of pansharpening methods and predictive filtering.
Section 3 explains the methods proposed in this paper. Section 4
presents a detailed comparison of the experimental results and provides
an in-depth analysis of the experiments. Finally, Section 5 concludes the
article and discusses future work.

2. Related work

This section briefly reviews traditional and DL-based pansharpening
methods, while also introducing the development and application of
kernel prediction neural networks.

2.1. Traditional pansharpening methods

Classic pansharpening methods can be roughly divided into three
categories: Meng et al. (2019) and Vivone et al. (2021b,a): (i). compo-
nent substitution (CS) approaches; (ii). multi-resolution analysis (MRA)
approaches; (iii). variational optimization (VO) approaches.

The core idea of the CS-based methods is to utilize the relationship
between the MS image and the PAN image to extract the high-frequency
part of the PAN image, and then inject it into the upsampled LRMS im-
age to obtain the final fused image HRMS. Commonly used methods are
the principal component analysis (PCA) method (Chavez and Kwarteng,
1989), intensity-hue-saturation (IHS) fusion (Rahmani et al., 2010), the
Gram–Schmidt (GS) spectral sharpening approach (Laben and Brower,
2000), the band-dependent spatial- detail (BDSD) method (Garzelli
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et al., 2008). CS-based methods exhibit reduced computational time
but may entail the loss of certain spectral details. Different from the
CS-based methods, the MRA-based methods apply a multi-resolution
transformation and extract high-frequency information from the PAN
image, and then inject the information into the upsampled LRMS
image to obtain the fused HRMS. Some instances of approaches in-
clude the Laplacian pyramid (LP) method (Burt and Adelson, 1983),
smoothing filter-based intensity modulation (SFIM) (Liu, 2000), and
he modulation transfer function generalized LP (MTF-GLP) (Aiazzi

et al., 2002, 2006) with high-pass modulation injection (MTF-GLP-
PM) technique (Aiazzi et al., 2003). Unlike the CS algorithm, the

MRA algorithm can avoid some spectral distortion, but some structural
information will be lost during the filtering process (Sheng et al., 2023).
VO-based methods typically involve formulating an optimization prob-
lem where the objective is to strike a balance between retaining spectral
information from the multispectral image and enhancing spatial de-
tails from the panchromatic image. The pioneering work by Ballester
et al. (2006) proposed the first VO algorithm, paving the way for
ubsequent algorithms that incorporate principles of sparsity (Zhang
t al., 2019; Li et al., 2013), low rank (Zhang et al., 2021; Yang et al.,

2018; Dian and Li, 2019), and variation priors (Liu et al., 2016b,a) to
produce a more accurate HRMS image. However, VO-based methods
often come with high computational complexity and rely heavily on
specific model assumptions. In cases where the number of iterative
ptimizations is insufficient or the model assumptions are inaccurate,
ignificant spectral or spatial distortions can arise. The abovementioned

traditional methods are rooted in subjective assumptions during the
super-resolution process, and their limited nonlinear capabilities may
ead to spectral distortions during pansharpening.

2.2. Deep learning based pansharpening methods

Driven by the remarkable achievements of deep learning across
various vision tasks, numerous DL-based approaches have emerged for
ansharpening, especially convolutional neural network (CNN)-based
ethods. Leveraging their exceptional hierarchical feature representa-

ion capabilities, DL methods can efficiently learn robust priors and
chieve competitive performance (Liu et al., 2022a).

Since the introduction of CNN for pansharpening by Masi et al.
(2016), CNN-based data-driven techniques (Liu et al., 2022b) have
widely emerged. Yang et al. (2017) incorporate domain-specific knowl-
edge and employ residual block (He et al., 2016) to achieve spectral and
patial preservation. Then (Scarpa et al., 2018) proposed an improved
NN+ network. Xing et al. (2018) proposed a deep metric learning
ethod which utilizes multiple nonlinear deep neural networks to

earn a refined geometric multi-manifold neighbor embedding. Jiang
t al. (2020) utilized a differential information mapping strategy and
ncorporated an attention module to enhance the spatial details in the

fusion results. GTP-PNet (Zhang and Ma, 2021) seeks the nonlinear
apping between the gradients of the PAN and HRMS. HyperNet (Li

t al., 2022a) utilized multiscale-attention-enhance blocks and dense-
etail-insertion blocks to extract spatial details. The CMINet (Wang

et al., 2024) framework integrated three modules to enhance modality-
aware features and address modality misalignment issues. He et al.
(2024) proposed to use implicit neural representations to parame-
terize images by neural networks for arbitrary-resolution pansharp-
ning. Thanh Nhat Mai et al. (2024) developed a deep unfolding
ensor rank minimization framework combined with a generalized de-

tail injection approach for pansharpening, which effectively leverages
he low-rank property of multispectral images and enhances spatial
nd spectral fidelity without relying on handcrafted formulations or
mpirical architectures.

While supervised learning has garnered significant achievements
for pansharpening, recent studies have highlighted several limitations,
such as the requirement for a substantial amount of labeled train-
ing data and scale-related problems. Consequently, several unsuper-
vised frameworks have been introduced to mitigate drawbacks inherent
24 
in supervised approaches. Shen et al. (2023) addressed the issue of
scale-shift introduced by supervised learning-based methods with a
general training framework. Liu et al. (2023) proposed a supervised–
unsupervised combined network by integrating a supervised network
based on Wald’s protocol (Wald et al., 1997) and an unsupervised
spatial–spectral compensation network to achieve high-fidelity pan-
sharpening. The UAP-Net (Xiong et al., 2023) introduced an unsuper-
ised pansharpening approach by leveraging a deep residual network

augmented with a spatial texture attention mechanism that employs
he high-frequency component of the input PAN as weights. PAN-
GDR (Lin et al., 2024) proposed an unsupervised pan-sharpening

framework by adaptive blur kernel estimation and mutually guided
detail restoration. Z-PNN (Ciotola et al., 2022) and 𝜆-PNN (Ciotola
et al., 2023) focused on designing spatial and spectral loss functions
o facilitate effective unsupervised learning. Generative adversarial
etworks (Goodfellow et al., 2014; Cui et al., 2024; Liu et al., 2022a;

Ozcelik et al., 2021) (GANs), renowned for their ability to produce
realistic images through an unsupervised adversarial learning, have
ecently been integrated into pansharpening (Shao et al., 2020; Ozcelik

et al., 2021; Liu et al., 2020; Zhou et al., 2022a; Xu et al., 2023).
or example, Ma et al. (2020) proposed a GAN-based framework con-

strained by both spectral and textural loss. Xu et al. (2023) employed
a coarse-to-fine framework and customized loss functions to enhance
oth spatial and spectral fidelity.

However, the aforementioned DL-based models directly extract fea-
tures from LRMS and PAN to get HRMS. As stated in the introduction
of this paper and as shown in Fig. 2, the direct manner may cause
information loss and fail to effectively preserve spatial or spectral
haracteristics. Therefore, this paper attempts to explore kernel predic-
ion by filtering LRMS and PAN to achieve better spatial and spectral
reservation.

2.3. Kernel prediction network

In contrast to regular convolutions that directly operate on degraded
mage to obtain the final output, deep predictive filtering aims to

learn a dynamic convolutional kernel for each pixel, which is then
pplied for filtering on degraded image. The advantage of kernel pre-
iction network lies in that the predictive filtering allows more focused

learning of the surrounding information for each pixel. Moreover, as
the filtering operation is performed directly on the original image, it
can significantly minimize information loss. The predictive filtering
technique has been widely applied in various low-level vision tasks,
e.g., denoising (Bako et al., 2017; Mildenhall et al., 2018; Xia et al.,
2020), deraining (Guo et al., 2021b), super-resolution (Cho et al.,
2021), shadow removal (Fu et al., 2021), inpainting (Guo et al., 2021a;
Li et al., 2022b). This paper investigates the use of predictive filtering
or pansharpening and explores methods for fusing features to obtain

effective kernels.

3. Methodology

In this section, we propose a kernel prediction network namely
PreMix that incorporates predictive filtering (abbreviated as 𝙿𝙵) for
pansharpening and element-wise feature mixing (abbreviated as 𝙴𝚆𝙵𝙼)
for the fine-grained fusion of LRMS and PAN. The structure of the
proposed base network is shown in Fig. 3.

3.1. Element-wise feature mixing

In order to perform fine-grained feature fusion to obtain highly
precise predictive kernels used to filter LRMS and PAN, we propose
lement-wise feature mixing. The basic intuition is to customize a

unique convolutional kernel for each element of the features, instead
of homogeneously convolving the input features with the same group
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Fig. 3. Data flow of our proposed PreMix-Base version.
Fig. 4. Different mask generation functions and their gradients. Compared to the commonly used sigmoid function (c), the combination of Tanh and ReLU (a) has been
experimentally proven to be superior.
of convolutional kernels. It is worth noting that the operation of cus-
tomizing convolutional kernels in EWFM is actually implicit. We do
not directly initialize learnable parameters of convolutional kernels for
each element, as this would result in a huge number of parameters
and computations. Instead, we use a learned mask to control the
convolutional kernel to achieve dynamic weights.

Let the tensor version of upsampled LRMS be denoted as 𝒀 ∈
R𝐻×𝑊 ×𝐶 , where 𝐻 and 𝑊 are the height and width and 𝐶 is the
number of channels of an LRMS image which is upsampled to the same
size of a PAN image. 𝑷 ∈ R𝐻×𝑊 ×𝐶 is a PAN image with height of
𝐻 and width of 𝑊 and its channel is duplicated for 𝐶 times. Let the
ground truth of HRMS be denoted as 𝑿 ∈ R𝐻×𝑊 ×𝐶 . The predicted
HRMS obtained through the network is denoted as 𝑿̂ ∈ R𝐻×𝑊 ×𝐶 .
We first extract features from LRMS and PAN separately. Assuming
𝑯 𝑙−1

𝑌 and 𝑯 𝑙−1
𝑃 are the outputs of the LRMS flow and PAN flow of the

𝑙 − 1th EWFM block. In the 𝑙th EWFM block, the features will be further
extracted through convolution,

𝑯 𝑙
𝑌 = Conv(𝑯 𝑙−1

𝑌 ), (1)

𝑯 𝑙
𝑃 = Conv(𝑯 𝑙−1

𝑃 ), (2)

where Conv(⋅) represents the regular convolution operation which in-
corporates a residual block (ResBlock) (He et al., 2016) that sequen-
tially features a convolution layer, a rectified linear unit (ReLU) (Glorot
et al., 2011) activation function, and a subsequent convolution layer,
culminating with a skip connection. Noting that the first EWFM block
directly convolves the original LRMS and PAN, i.e., when 𝑙 = 1, 𝑯0

𝑌 = 𝒀
and 𝑯0

𝑃 = 𝑷 . We then integrate the information of these two features
and learn a mask,

𝑴 𝑙 = 𝜎
(

Conv(𝑯 𝑙
𝑌 +𝑯 𝑙

𝑃 )
)

, (3)

where 𝜎(⋅) is an activation function that maps its inputs to values
ranging between 0 and 1. Typically, the function 𝜎(⋅) can be the sigmoid
function, but it may not be the best choice. The sigmoid function,
characterized by a maximum gradient value of 0.25 (refer to Fig. 4(c)),
can induce slow optimization and gradient vanishing problems as
the number of layers increases. Moreover, the sigmoid has a smooth
transition and lacks sparsity. The generated mask may be similar,
25 
thereby leading to insignificant features. Therefore, to explore effective
mask generation methods, we explore another 5 activation functions
with different properties (say, gradients, sparse activating, etc..). These
functions correspond to three mixing strategies: soft mixing, sparse soft
mixing, and hard mixing. Detailed explanations will be provided in
Section 3.2.

After obtaining 𝑴 𝑙, we perform a mixing operation on the original
features,

𝑯 𝑙
𝑌 ← (1 −𝑴 𝑙)⊙𝑯 𝑙

𝑌 +𝑴 𝑙 ⊙𝑯 𝑙
𝑃 , (4)

𝑯 𝑙
𝑃 ← (1 −𝑴 𝑙)⊙𝑯 𝑙

𝑃 +𝑴 𝑙 ⊙𝑯 𝑙
𝑌 , (5)

where ⊙ is the element-wise product. The mixed features will be used as
the inputs for the next layer of the EWFM block. Note that when carrying
out the convolution operation using the mixed result, it implicitly
includes customizing the convolution kernel for each element. In the
next, we will analyze the mixing operation from both the perspective
of features and kernels.

3.1.1. Feature perspective
From the perspective of features, the value of 𝑴 𝑙 in Eqs. (4)

and (5) indicates the extent to which features are exchanged. Taking
LRMS flow as an example, when certain elements in 𝑴 𝑙 are equal to
1, it means that these elements of LRMS will be exchanged by the
features extracted by PAN flow. Supposing 𝒉𝒚 ′ and 𝒉𝒑′ are the local
neighborhoods of a certain element of the mixed features. Let 𝒌𝟏 and 𝒌𝟐
be the convolutional kernels for LRMS flow and PAN flow, respectively.
Convolving 𝒉′𝒚 with 𝒌𝟏 yields,
𝒉′𝒚 ∗ 𝒌𝟏 =

∑

𝑗∈𝑖

((

1 −𝒎𝑗) × 𝒉𝒚 𝑗
)

× 𝒌𝟏𝑗−𝑖

+
∑

𝑗∈𝑖

(𝒎𝑗 × 𝒉𝒑𝑗 ) × 𝒌𝟏𝑗−𝑖

=
(

(1 −𝒎)⊙ 𝒉𝒚
)

∗ 𝒌𝟏 +
(

𝒎⊙ 𝒉𝒑
)

∗ 𝒌𝟏,

(6)

where ∗ is the convolution operation and 𝑖 are neighbors of the 𝑖th
element. 𝒎, 𝒉𝒚 , 𝒉𝒑 represent the local elements of 𝑴 𝑙, 𝑯𝒀 , 𝑯𝑷 during
convolution, respectively. Note that the convolution operation in neural
networks is actually performing a cross-correlation for elements and
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Fig. 5. Different mixing strategies. Left: Soft mixing, each element 𝑴 𝑖 varies from 0
to 1. Middle: Sparse soft mixing, i.e., sparse version of soft mixing, the majority of
elements in 𝑴 are 0. Right: Hard mixing, 𝑴 𝑖 approaches 0 or 1.

kernel. This operation is inverted to the traditional convolution, i.e., the
kernel is rotated by 180◦, but since the parameters of the convolution
kernel are trainable, both operations are equivalent. In this paper,
Eq. (6) is expressed by traditional convolution. Similarly, the kernel
𝒌𝟐 for convolution on 𝒉′𝒑 gives,

𝒉′𝒑 ∗ 𝒌𝟐 =
(

(1 −𝒎)⊙ 𝒉𝒑
)

∗ 𝒌𝟐 +
(

𝒎⊙ 𝒉𝒚
)

∗ 𝒌𝟐. (7)

From the perspective of features, taking LRMS as an example, 𝒉𝒚
will be masked into two parts, where one part of (1 − 𝒎) will be
convoluted by 𝒌𝟏, and the other part of 𝒎 will be convoluted by 𝒌𝟐.

3.1.2. Kernel perspective
From the perspective of convolution kernels, this operation is ac-

tually equivalent to kernel-wise attention. The kernel for every single
element is dynamically changed by the weight which is controlled by
the learned mask,
𝒉′𝒚 ∗ 𝒌𝟏 =

∑

𝑗∈𝑖

𝒉𝑗𝒚 ×
(

(

1 −𝒎𝑗) × 𝒌𝑗−𝑖𝟏

)

+
∑

𝑗∈𝑖

𝒉𝑗𝒑 × (𝒎𝑗 × 𝒌𝑗−𝑖𝟏 )

= 𝒉𝒚 ∗
(

𝚛𝚘𝚝𝟷𝟾𝟶 (1 −𝒎)⊙ 𝒌𝟏
)

+ 𝒉𝒑 ∗
(

𝚛𝚘𝚝𝟷𝟾𝟶 (𝒎)⊙ 𝒌𝟏
)

,

(8)

where 𝚛𝚘𝚝𝟷𝟾𝟶(⋅) represents flipping the input by 180◦. 𝚛𝚘𝚝𝟷𝟾𝟶(⋅) aligns
the superscripts of 𝒎 and 𝒌𝟏. For 𝒎 with superscript 𝑗, it needs to
be multiplied by 𝒌𝟏 with superscript 𝑗 − 𝑖, which corresponds to the
operation of rotating 𝒎 by 180◦ and then performing a dot product.
Similarly, Eq. (7) can be rewritten as,
𝒉′𝒑 ∗ 𝒌𝟐 = 𝒉𝒑 ∗

(

𝚛𝚘𝚝𝟷𝟾𝟶 (1 −𝒎)⊙ 𝒌𝟐
)

+ 𝒉𝒚 ∗
(

𝚛𝚘𝚝𝟷𝟾𝟶 (𝒎)⊙ 𝒌𝟐
)

.
(9)

According to Eqs. (8) and (9), although each set of convolution
kernels 𝒌𝟏 and 𝒌𝟐 are fixed, we assign different weights to the elements
in the convolution kernels through a learnable mask. As the proposed
model is an LRMS and PAN dual-stream feature extraction network, 𝒌𝟏
and 𝒌𝟐 can be controlled by 𝒎 and 1 − 𝒎, respectively. This dynamic
convolution endows diverse weights to each element of the convolution
kernel, allowing for extremely fine-grained feature fusion. Results from
ablation experiments (see Table 4) demonstrate that the proposed EWFM
operation is more effective than only using predictive filtering, and the
combination of both achieves the best performance.

3.2. Mixing strategy

We control 𝜎(⋅) in Eq. (3) to generate masks corresponding to
different mixing strategies. Typically, the sigmoid function is used
to map inputs to the range between 0 and 1. This function actually
corresponds to a soft fusion strategy, as shown in Fig. 5 (left). However,
this strategy may not be effective because the masks activated by the
sigmoid function may become homogeneous due to the smoothness of
the function. Remote sensing images are complex and diverse, thus we
want to learn a more flexible mask. Inspired by the sparse activation of
26 
the ReLU (Glorot et al., 2011) function, we propose other functions to
replace the sigmoid function to explore more feasible mixing strategies,
as shown in Fig. 5 (middle and right). Experimental results show that
sparsity enables focusing on different features in each layer, avoiding
the attention homogenization of the sigmoid. Below, we will introduce
three mixing strategies as shown in Fig. 5.

3.2.1. Soft mixing
Soft mixing maps all its inputs to between 0 and 1. The representa-

tive function is sigmoid activation:
𝜎(𝑥) = 𝚂𝚒𝚐𝚖𝚘𝚒𝚍(𝑥)

= 1
1 + 𝑒−𝑥

.
(10)

As mentioned before, the over-smoothness of the sigmoid poten-
tially leads to redundancy and inefficiency in the learned mask. We
explore alternative activation functions for generating masks. One of
them is the combination of Tanh and ELU (Clevert et al., 2015),
𝜎(𝑥) = 𝚃𝚊𝚗𝚑 (𝙴𝙻𝚄(𝑥) + 1)

=

{ 2
1+𝑒−2𝑒𝑥

− 1 if 𝑥 < 0,
2

1+𝑒−2(𝑥+1) − 1 if 𝑥 ≥ 0,

(11)

where 𝙴𝙻𝚄(𝑥) + 1 is to translate the inputs to a value greater than 0.
Then it will be sent to 𝚃𝚊𝚗𝚑 to learn a mask from 0 to 1. As shown in
Fig. 4(b), it has stronger gradients than sigmoid. Also, the asymmetry
will learn a non-homogeneous mask. However, Eq. (11) involves more
exponential operations. The alternative function is to replace Tanh
with Softsign,
𝜎(𝑥) = 𝚂𝚘𝚏𝚝𝚜𝚒𝚐𝚗 (𝙴𝙻𝚄(𝑥) + 1)

=

{ 𝑒𝑥

𝑒𝑥+1 if 𝑥 < 0,
𝑥+1
𝑥+2 if 𝑥 ≥ 0.

(12)

Eq. (12) is not computationally expensive and also has asymmetry,
but its gradient is smaller than sigmoid (see Fig. 4(e)).

3.2.2. Sparse soft mixing
The above mentioned functions are not sparsity-inducing. Due to

their smooth transition, very similar masks may be learned. Therefore,
we propose sparse soft mixing (Fig. 5 (middle)) to learn a significantly
differentiating mask.
𝜎(𝑥) = 𝚃𝚊𝚗𝚑 (𝚁𝚎𝙻𝚄(𝑥))

=

{

0 if 𝑥 < 0,
2

1+𝑒−2𝑥 − 1 if 𝑥 ≥ 0.

(13)

Eq. (13) is to truncating Eq. (11) where 𝑥 is less than 0. Similarly,
use a combination of Softsign and ReLU to reduce the computa-
tional load,
𝜎(𝑥) = 𝚂𝚘𝚏𝚝𝚜𝚒𝚐𝚗 (𝚁𝚎𝙻𝚄(𝑥))

=

{

0 if 𝑥 < 0,
𝑥

1+𝑥 if 𝑥 ≥ 0.

(14)

Induce sparsity in the activations learn a more discriminative mask.
The plot of sparse soft mixing is shown in Figs. 4(a) and 4(d).

3.2.3. Hard mixing
The extreme case of sparse soft mixing is hard mixing, i.e., the mask

either approaches 0 or 1. This forces the network to learn important
features and suppress unimportant ones. In order to achieve hard
mixing, the simplest method is manually set a threshold 𝛽 and use a
step function to map the input value to 0 or 1,

ℎ(𝑥) = 𝚂𝚒𝚐𝚗 (𝜎(𝑥)) =

{

0 if 𝜎(𝑥) ≤ 𝛽 ,
(15)
1 otherwise,



Y. Cui et al. ISPRS Journal of Photogrammetry and Remote Sensing 219 (2025) 22–37 
Fig. 6. Approximate the step function using the sigmoid function. Note that in (b), to
prevent gradient explosion, we truncate the maximum gradient to 1.

where 𝛽 is the threshold. However, the hard truncating approach has
two drawbacks. Firstly, the mask is constrained to values of 0 or 1,
potentially reducing diversity and leading to the learning of overly
homogeneous features. Secondly, the parameter 𝛽 is arbitrarily set,
making its determination a time-consuming and laborious task. To
address these issues, we suggest using the s-shaped function (Iliev et al.,
2017, 2015), such as the sigmoid, to approximate the step function (see
Fig. 6). It allows for the learned mask to be closer to 0 or 1, while also
enabling the threshold parameter to be trainable,
ℎ̂(𝑥) = 𝚂𝚒𝚐𝚖𝚘𝚒𝚍 (𝑘 × (𝜎 (𝑥) − 𝛽))

= 1
1 − 𝑒−𝑘(𝜎(𝑥)−𝛽)

,
(16)

where 𝑘 is an amplification factor. Compared to ℎ(𝑥), ℎ̂(𝑥) is differen-
tiable. But the drawback of Eq. (16) is the introduction of an adjustable
amplification factor 𝑘. Fortunately, the value of 𝑘 can be empirically
determined by examining the shape of the s-shaped function. In this
paper, we fix 𝑘 to 20.

3.3. Predictive filtering

After conducting element-wise feature mixing in each EWFM block,
we utilize convolution to obtain predictive kernels 𝑲𝑌 and 𝑲𝑃 at the
final 𝐿th layer of the network,

𝑲𝑌 = Conv(𝑯𝐿
𝑌 ), (17)

𝑲𝑃 = Conv(𝑯𝐿
𝑃 ). (18)

Afterwards, the predictive kernels from the LRMS flow and the PAN
flow will be used to filter LRMS and PAN, respectively. We then add
the filtered results to obtain the final prediction of HRMS,

𝑿̂ = 𝒀 ⊛𝑲𝑌 + 𝑷 ⊛𝑲𝑃 , (19)

where ⊛ represents predictive filtering and the 𝑖th pixel of the predic-
tion is computed as follows,
𝑿̂[𝑖] =

∑

𝑗∈𝑖

𝑲𝑌 [𝑗 − 𝑖] × 𝒀 [𝑗]

+
∑

𝑗∈𝑖

𝑲𝑃 [𝑗 − 𝑖] × 𝑷 [𝑗].
(20)

3.4. Multi-scale multi-branch progressive filtering

In Eq. (20), HRMS will be obtained by filtering LRMS and PAN a
single time. We denote the abovementioned network architecture as
PreMix-B (Base). In this section, we propose a multi-scale and multi-
branch progressive filtering network, i.e., PreMix-H (Huge). Compared
to PreMix-B, PreMix-H is more powerful to conduct fine-grained feature
fusion.

The architecture of PreMix-H is shown in Fig. 7. In addition to the
original branch, we added histogram equalization (HE) branch and high
pass (HP) filtering branch. The HE branch works towards achieving a
27 
Fig. 7. Data flow of our proposed PreMix-Huge version.

Fig. 8. Three branches used as inputs for PreMix-Huge.

more uniform data distribution (refer to Fig. 8(b)), thereby lowering the
complexity of network training. The HP filtering branch, on the other
hand, is designed to highlight the edges and details of the image (see
Fig. 8(c)), enriching the spatial information of the filtering result. For
implementing, we firstly apply a Gaussian low-pass filter to the original
image using a 3 × 3 kernel with a standard deviation of 1.5 × 1.5 to
obtain a low-pass filtered image. To ensure the filtered image retains
the same dimensions as the original, we employ a reflection padding
mode at the image boundaries. Subsequently, the high-pass filtered
image is obtained by subtracting the low-pass filtered image from the
original.

To learn more diverse feature representations, each branch adopts
multi-scale inputs, i.e., the original image resolution is reduced by 2×
and by 4× to serve as additional inputs. In each branch, the result of
lower-resolution filtering will be passed to the upper layer, so that each
layer will cascade filter the results from the previous layer. Through
multi-scale and multi-branch filtering, we will obtain predicted images
with abundant spectral information and rich spatial details. Taking the
original branch as an example,

𝑿̂1 = 𝑓 (𝒀 ↓4,𝑷 ↓4, 𝒀 ,𝑷 ), (21)

where 𝑿̂1 is the predicted result obtained at the 4× scale, 𝑓 (⋅) represents
the PreMix-Base network, which takes in four inputs. The former two
arguments are LRMS and PAN at the 4× scale for extracting predictive
kernels, while the latter two are the original LRMS and PAN to be
filtered. Then the LRMS and PAN at the 2× scale are used as inputs
for filtering 𝑿̂1 and PAN.
𝑿̂2 = 𝑓 (𝒀 ↓2,𝑷 ↓2, 𝑿̂1,𝑷 ). (22)
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Similarly, obtain the final filtering result by filtering 𝑿̂2 in progres-
sive manner,

𝑿̂3 = 𝑓 (𝒀 ,𝑷 , 𝑿̂2,𝑷 ). (23)

For other branches, the process is similar. As shown in Fig. 7, we
take the final filtering results of each branch and feed them into the
next branch for further filtering. At the same time, in order to maintain
continuity of features, we add the features from the final layer of each
PreMix-Base to the next layer.

4. Experiments

We compare the proposed PreMix model with several competitive
methods containing 6 commonly-recognized traditional methods in-
cluding Brovey (Gillespie et al., 1987), IHS (Rahmani et al., 2010),
SFIM (Liu, 2000), GS (Laben and Brower, 2000), GSA (Aiazzi et al.,
2007), CNMF (Yokoya et al., 2012), and 7 SOTA DL-based methods
including 5 supervised methods, GPPNN (Xu et al., 2021), SFINet (Zhou
et al., 2022b), MDCUN (Yang et al., 2022), PGCU (Zhu et al., 2023),
UTSN (Sheng et al., 2023), and 2 unsupervised methods including Z-
PNN (Ciotola et al., 2022) and 𝜆-PNN (Ciotola et al., 2023). All codes
are open source and can be found in the official repositories.

4.1. Steups

4.1.1. Datasets
To comprehensively evaluate the superiority of the proposed

method in this study, we use a publicly available large-scale pan-
sharpening dataset named NBU_PansharpRSData (Meng et al., 2021).
We employed the panchromatic and multispectral images from the
GaoFen-1, WorldView-2, and IKONOS satellite sensors for evaluation.
The spatial resolution of LRMS and PAN in GaoFen-1 are 8 m and 2 m,
respectively. The spatial resolution of LRMS and PAN in WorldView-
2 are 2 m and 0.5 m, respectively. The spatial resolution of LRMS
and PAN in IKONOS are 4 m and 1 m, respectively. The size of all
multispectral images is 256 × 256, while the size of panchromatic
images is 1024 × 1024. We partitioned the dataset into training,
validation, and test sets in a ratio of 5:2:3.

In our experimentation, we conducted simulation experiments at
reduced-resolution and real-world pansharpening experiments at full-
resolution. For the simulation experiments, we utilized the widely
adopted Wald’s protocol (Wald et al., 1997) to generate the training
data. Specifically, the PAN and LRMS images will be downsampled with
a ratio 𝑟 (where 𝑟 is the ratio of the resolution from PAN to LRMS,
which in this study is 4) as model inputs, with the original LRMS image
considered as the ground truth (GT). In the real-world experiments, the
original LRMS and PAN images were used as inputs and there is no GT
for reference.

4.1.2. Implementation details
The network architecture is implemented using PyTorch version

v2.1.2. The network is trained with a batch size of 16 and a learning
rate of 1e−3 optimized by the Adam (Kingma and Ba, 2015) optimizer
for 300 epochs. The learning rate decays by a factor of 0.8 every 50
epochs. We utilize the commonly used 𝓁1 loss as the loss function. All
experiments were conducted on an NVIDIA RTX A5000 GPU with 24 GB
of memory. The same settings were employed for all DL-based methods
to validate the superiority of the network. In the experiments below,
PreMix-B employs 2 layers of EWFM blocks, with mask generation using
Eq. (13), and utilizes trainable hard mixing (Eq. (16)). In PreMix-H, the
number of EWFM in PreMix-B is set to 1, while the other configurations
remain unchanged. Full codes can be accessed at https://github.com/
yc-cui/PreMix.
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Fig. 9. The kernel density estimation (KDE) plots. The pixel values are normalized to
0 and 1.

4.1.3. Evaluation metrics
For simulated reduced-resolution experiments, we compare the dif-

ferences between prediction and GT using the peak signal-to-noise
ratio (PSNR), the structural similarity (SSIM) (Wang et al., 2004), the
erreur relative globale adimensionnelle de synthèse (ERGAS) (Wald
et al., 1997), and the spectral angle mapper (SAM) (Yuhas et al.,
1992). For full-resolution real-world data, the spectral distortion index
𝐷𝜆 (Alparone et al., 2008), the spatial distortion index 𝐷𝑆 (Alparone
et al., 2008), and the quality without reference (QNR) (Alparone et al.,
2008) are employed as non-reference metrics.

4.2. Quantitative comparison

This section conducts a thorough quantitative comparison of the
proposed method against existing models, providing a detailed as-
sessment of performance metrics to evaluate the effectiveness of the
proposed method.

4.2.1. Evaluation at reduced-resolution
Table 1 presents the comparison results of full-reference metrics for

the simulated experiments. Traditional methods lag significantly be-
hind DL-based approaches due to the inability to leverage large datasets
for training. Among all DL-based models, our proposed PreMix-H out-
performs others on all metrics across all satellite sensors, demonstrating
the superiority of the proposed method. Specifically, taking PSNR as
an example, PreMix-H achieves 43.62 dB (+1.83), 36.54 dB (+0.74),
and 40.23 dB (+1.24) on the GaoFen-1, WorldView-2, and IKONOS
datasets, respectively, compared to other methods. For SSIM, PreMix-
H achieves 96.97%, 94.66% and 95.29%, the improvements are 1%,
0.63%, and 0.98% over other methods. PreMix-B performs similarly to
SFINet (Zhou et al., 2022b) on GaoFen-1, surpasses it on all metrics
on WorldView-2, but performs slightly inferior on IKONOS, where
MDCUN (Yang et al., 2022) and SFINet (Zhou et al., 2022b) achieve
better results.

The main reason for PreMix-B achieving relatively inferior results
lies in the inherent distribution differences among datasets from differ-
ent satellites. Each remote sensing dataset possesses unique spectral fea-
tures and spatial details. The performance of PreMix-B on the IKONOS
dataset is slightly less satisfactory, indicating that the model’s fitting
capability for IKONOS satellite data is marginally inferior compared
to its fitting performance on other datasets. To statistically analyzed
the reasons, Fig. 9 displays the 1d probability kernel density estimation
(KDE) plots of the red band for each satellite, depicting the univariate
distribution of pixel values sampled from the satellite data (normalized
to 0 to 1). It is observable that datasets from the two distinct satellite

https://github.com/yc-cui/PreMix
https://github.com/yc-cui/PreMix
https://github.com/yc-cui/PreMix
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Table 1
Quantitative comparison results on simulated reduced-resolution data. ↓: Lower is better. ↑: Higher is better. Color convention: The best, 2nd-best, and 3rd-best among all
algorithms.

Model GaoFen-1 WorldView-2 IKONOS

PSNR↑ SSIM↑ ERGAS↓ SAM↓ PSNR↑ SSIM↑ ERGAS↓ SAM↓ PSNR↑ SSIM↑ ERGAS↓ SAM↓

Brovey 34.63 0.8414 2.238 0.0256 32.25 0.8646 5.269 0.0985 35.82 0.9006 2.295 0.0524
IHS 34.80 0.8329 2.356 0.0302 32.22 0.8498 5.392 0.1051 35.68 0.8950 2.371 0.0544
SFIM 34.95 0.8221 2.278 0.0307 31.90 0.8782 5.611 0.0913 35.93 0.9078 2.277 0.0458
GS 34.16 0.8330 2.491 0.0385 32.63 0.8790 5.039 0.0958 36.28 0.9131 2.199 0.0487
GSA 34.56 0.8359 2.189 0.0359 33.53 0.8911 4.538 0.0900 37.53 0.9204 1.939 0.0437
CNMF 36.79 0.8794 1.811 0.0303 33.34 0.8988 4.586 0.0849 37.14 0.9242 1.968 0.0446

GPPNN 39.03 0.9390 1.397 0.0277 35.39 0.9368 3.699 0.0720 37.70 0.9301 1.874 0.0448
SFINet 41.79 0.9597 1.036 0.0198 35.80 0.9403 3.524 0.0677 38.99 0.9422 1.630 0.0370
MDCUN 41.69 0.9589 1.048 0.0194 33.06 0.8827 4.717 0.0888 38.98 0.9431 1.629 0.0367
UTSN 39.79 0.9504 1.271 0.0244 34.88 0.9293 3.952 0.0782 37.75 0.9295 1.885 0.0456
PGCU 39.90 0.9525 1.254 0.0266 35.31 0.9369 3.732 0.0735 37.43 0.9350 1.939 0.0463
Z-PNN 37.68 0.9022 1.629 0.0296 32.28 0.8545 5.016 0.1054 37.09 0.9224 1.964 0.0494
𝜆-PNN 38.14 0.9376 1.497 0.0229 33.96 0.9028 4.319 0.0913 37.91 0.9318 1.931 0.0442

PreMix-B 41.77 0.9605 1.031 0.0196 35.97 0.9420 3.464 0.0664 38.94 0.9412 1.637 0.0374
PreMix-H 43.62 0.9697 0.863 0.0169 36.54 0.9466 3.411 0.0635 40.23 0.9529 1.460 0.0326
Table 2
Quantitative comparison results on real-world full-resolution data. ↓: Lower is better. ↑: Higher is better. Color convention: The best,
2nd-best, and 3rd-best among all algorithms.
Model GaoFen-1 WorldView-2 IKONOS

𝐷𝜆 ↓ 𝐷𝑆 ↓ QNR↑ 𝐷𝜆 ↓ 𝐷𝑆 ↓ QNR↑ 𝐷𝜆 ↓ 𝐷𝑆 ↓ QNR↑

Brovey 0.0665 0.1889 0.7591 0.0286 0.0702 0.9033 0.0291 0.1014 0.8729
IHS 0.0553 0.2071 0.7516 0.0312 0.0697 0.9013 0.0311 0.1069 0.8657
SFIM 0.0228 0.0712 0.9085 0.0270 0.0615 0.9135 0.0388 0.0878 0.8784
GS 0.0483 0.1932 0.7712 0.0202 0.0695 0.9117 0.0204 0.0933 0.8886
GSA 0.0479 0.1479 0.8143 0.0172 0.0723 0.9120 0.0255 0.0857 0.8918
CNMF 0.0190 0.1059 0.8776 0.0259 0.0748 0.9016 0.0300 0.0807 0.8924

GPPNN 0.0211 0.0752 0.9053 0.0221 0.0688 0.9107 0.0296 0.0812 0.8923
SFINet 0.0063 0.0417 0.9524 0.0091 0.0598 0.9317 0.0176 0.0723 0.9120
MDCUN 0.0035 0.0243 0.9722 0.0179 0.0490 0.9342 0.0192 0.0704 0.9122
UTSN 0.0246 0.0875 0.8901 0.0243 0.0685 0.9091 0.0366 0.0935 0.8742
PGCU 0.1531 0.0918 0.7707 0.1445 0.0997 0.7718 0.0779 0.0872 0.8437
Z-PNN 0.0194 0.0681 0.9138 0.0195 0.0691 0.9127 0.0285 0.0722 0.9014
𝜆-PNN 0.0092 0.0294 0.9617 0.0381 0.0717 0.8929 0.0207 0.0769 0.9040

PreMix-B 0.0065 0.0452 0.9486 0.0149 0.0642 0.9221 0.0197 0.0736 0.9088
PreMix-H 0.0042 0.0141 0.9817 0.0109 0.0612 0.9287 0.0133 0.0584 0.9296
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Fig. 10. PNSR v.s. Number of params (K) v.s. MACs (G). (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of
his article.)

sources exhibit significant distributional differences. Such variations
are anticipated to engender discrepancies in the model’s capacity to
fit the different datasets. This may be attributed to the fact that in
omparison to the other two datasets, IKONOS exhibits a multimodal
istribution with more distinct peaks, which indicates a higher degree
29 
of variation within the data. Since we have constrained PreMix-B to the
mallest scale, the limited number of parameters and single-scale filter-

ing may struggle to capture its intrinsic patterns. In contrast to IKONOS,
he distribution of the WorldView-2 dataset is more smoothing and
ighly concentrated. Such a distribution confers a distinct advantage
or neural network optimization, which also elucidates why our model
erforms relatively better on the WorldView-2 dataset.

On the other hand, compared to most of other models, PreMix-B
boasts a lower parameter count, aiming to evaluate the performance of
the model at the smallest scale. The PreMix model introduced in this pa-
per necessitates the customization of a specific convolutional kernel for
each pixel and its neighbors to execute predictive filtering. However,
if the model is endowed with an insufficient number of parameters, it
may fail to capture the intricate patterns and relationships within the
ata, hindering the learning of inherent features and characteristics.
onsequently, this could impede the model’s capacity to learn effective
ernels, potentially leading to suboptimal results.

The two unsupervised models, Z-PNN (Ciotola et al., 2022) and 𝜆-
PNN (Ciotola et al., 2023), demonstrate a diminished comparability
with supervised methods when evaluated at reduced-resolution. This
stems from their training on full-resolution dataset, which does not
lign with the data distribution at lower resolutions. In contrast, super-

vised learning models are trained at reduced-resolution and thus can
naturally adapt to the distribution at reduced scales. Unlike supervised
models, unsupervised learning models do not directly learn the map-
ing from inputs to predictions; instead, they indirectly learn spatial

super-resolution from PAN images and spectral preservation from LRMS
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Fig. 11. Visual comparison on GaoFen-1 dataset. The bright rectangular box represents the area zoomed in for display. The last row is the mean absolute error between prediction
and GT.
images. The divergence in learning strategies underscores a great gap
between the performance capabilities of supervised and unsupervised
models.

4.2.2. Evaluation at full-resolution
Table 2 presents the comparison results of non-reference metrics

for the full-resolution real-data experiments. Our PreMix-B does not
generalize well to full scale compared to other models. The PreMix-B
model employs single-scale filtering and is equipped with only a single
layer of the EWFM module. Simplified models may lack the requisite
parameters or architectural complexity to capture the intricacies and
patterns present in the data, thus having limited expressive capability
and generalizability. Experimental results on varying the number of
EWFM layers indicate that performance can indeed be further improved
by adding more layers (refer to Section 4.4.1 Fig. 20). This finding un-
derscores the model’s potential to enhance its predictive accuracy and
generalizability through increased complexity. However, we have in-
tentionally constrained the parameter count of PreMix-B to be relatively
small. One layer and single filtering is intended to validate the model’s
performance at a minimal scale. This is also primarily to maintain a
comparable parameter volume with models like MDCUN (Yang et al.,
2022) and PGCU (Zhu et al., 2023), thereby ensuring a fair comparison.
On the other hand, PreMix-H achieves better results, indicating the
effectiveness of the proposed multi-scale and multi-branch progressive
filtering. Compared to the second-best model, PreMix-H improves QNR
30 
by 0.95% and 1.74% on the GaoFen-1 and IKONOS datasets, respec-
tively. However, on the WorldView-2 dataset, SFINet (Zhou et al.,
2022b) and MDCUN (Yang et al., 2022) remain competitive models and
achieve better results compared to PreMix-H. Compared to supervised
models, the unsupervised Z-PNN (Ciotola et al., 2022) 𝜆-PNN (Ciotola
et al., 2023) excel in spatial preservation, but its spectral preservation
is less satisfactory. The discrepancy may be attributed to the meticulous
design of the loss function.

4.2.3. Evaluation of complexity
Table 3 presents the number of parameters, the computational

cost (multiply-accumulate operations, MACs), and processing time per
image for all DL-based models. In Table 1, PreMix-B exhibits simi-
lar performance to SFINet (Zhou et al., 2022b) and MDCUN (Yang
et al., 2022), but outperforms them in terms of lower computation
and parameters as well as shorter runtime, according to Table 3. This
demonstrates the superiority of the proposed method in this paper.
Although PreMix-H has more parameters, its computational cost and
inference time are lower than that of SFINet (Zhou et al., 2022b)
and MDCUN (Yang et al., 2022). Taking SFINet (Zhou et al., 2022b)
as an example, the inference time for our model is 8.734 ms per
image, significantly outperforming 23.90 ms per image of SFINet (Zhou
et al., 2022b). This is mainly attributed to the extensive use of op-
erations in the image frequency domain and various attention tricks
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Fig. 12. Visual comparison on IKONOS dataset. The bright rectangular box represents the area zoomed in for display. The last row is the mean absolute error between prediction
and GT.
Table 3
Comparison of model complexity and inference time. MACs was obtained under the
condition of predicting images with 4 bands 256 × 256 resolution and a batch of 1.
The inference time was obtained by calculating the average time taken by the model
to perform forward inference on all images in the testing set.

Model Params(M) MACs(G) Time (ms/img)

GPPNN 0.239 11.11 7.586
SFINet 0.611 35.47 23.90
MDCUN 0.141 117.8 15.59
UTSN 0.424 27.79 2.454
PGCU 0.116 6.823 8.991
Z-PNN 0.023 1.123 1.816
𝜆-PNN 0.204 12.70 2.983
PreMix-B 0.151 9.909 2.800
PreMix-H 0.865 35.03 8.734

of SFINet (Zhou et al., 2022b), which are more computationally in-
tensive. In contrast, the model presented in this paper relies predomi-
nantly on convolutions, which are efficiently supported by PyTorch and
CUDA, thus providing a substantial speed advantage despite the higher
parameter count.

To further illustrate the superiority of the proposed algorithm in this
paper and provide a clearer visual contrast, we plotted the relationship
between model parameters, MACs and PSNR, as shown in Fig. 10. Each
colored point in the graph corresponds to a distinct model, with the
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point’s diameter indicative of the model’s parameter count. The closer
a point is to the upper left corner and the smaller its diameter, the
more superior the model’s performance is considered. The red circles
represents the performance of PreMix-B equipped with 2 to 5 EWFM lay-
ers. It can be observed from the figure that the proposed model in this
paper achieves superior performance compared to other models with
fewer parameters and computational costs. To enhance the model’s
capacity for learning effective and robust kernels, it is necessary to
enable deeper layers and more branches, which inevitably leads to
increased complexity and longer inference time. A large number of
parameters can lead to overfitting when directly learning the mapping
from LRMS and PAN to HRMS (Fig. 1(a)). Because the network may
directly memorize the mapping from inputs to predictions. However,
in the method proposed in this paper, the increase in the number
of parameters is primarily utilized to learn more effective predictive
kernels that are applied to LRMS and PAN (Fig. 1(b)), thereby indirectly
obtaining HRMS. The proposed strategy facilitates an indirect acquisi-
tion of HRMS and can mitigate the risk of overfitting. This is because
the complexity of memorizing the kernels for filtering LRMS and PAN
is inherently greater than that of memorizing HRMS.

4.3. Visual comparison

In this section, we examine the visual quality and fidelity of the
output, and offer a qualitative analysis of spatial and spectral charac-
teristics of different methods.
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Fig. 13. Visual comparison on WorldView-2 dataset. The bright rectangular box represents the area zoomed in for display. The last row is the mean absolute error between
prediction and GT. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
4.3.1. Evaluation at reduced-resolution
Figs. 11, 12, and 13 present the visual comparison of reduced-

resolution on the GaoFen-1, IKONOS and WorldView-2, respectively.
To further clarify the superiority of the proposed model in this paper,
we also generate the mean absolute error images and local zoomed-in
images between the prediction and GT. Clearly, the model proposed in
this paper focuses more on spatial details (e.g., edges in the zoomed-in
area), demonstrating smaller reconstruction error. While SFINet (Zhou
et al., 2022b) also shows good performance, it slightly lags behind the
proposed PreMix model in terms of image detail preservation.

4.3.2. Evaluation at full-resolution
Figs. 14, 15, and 16 present the visual comparison results at full-

resolution of WorldView-2, GaoFen-1, and IKONOS, respectively. To
assess the generalizability and practicality on out-of-dataset images,
Fig. 15 is sourced from another high-resolution dataset (Zhang et al.,
2023). In traditional algorithms, Brovey (Gillespie et al., 1987), IHS
(Rahmani et al., 2010), and CNMF (Yokoya et al., 2012) exhibit no-
ticeable spectral distortions, while GS (Laben and Brower, 2000) and
GSA (Aiazzi et al., 2007) yield more blurring results. Among all DL-
based models, GPPNN (Xu et al., 2021), UTSN (Sheng et al., 2023), and
PGCU (Zhu et al., 2023) lack the ability to generalize to full-resolution
and lead to significant spectral distortions, especially PGCU (Zhu et al.,
2023). The results produced by MDCUN (Yang et al., 2022) are rel-
atively blurred. Both SFINet (Zhou et al., 2022b) and the proposed
32 
Table 4
Ablation of EWFM and PF. ↓: Lower is better. ↑: Higher is better.

Configuration Metric

EWFM PF PSNR↑ SSIM↑ ERGAS↓ SAM↓

✗ ✗ 40.76 0.9530 1.144 0.0221
✓ ✗ 41.66 0.9617 1.040 0.0205
✗ ✓ 41.41 0.9569 1.066 0.0199
✓ ✓ 42.51 0.9655 0.953 0.0184

PreMix model perform well, but compared to SFINet (Zhou et al.,
2022b), our model excels in details, such as the tennis court in the top
left corner of the zoomed-in image in Fig. 14.

4.4. Ablation study

We evaluate the contribution of every individual component to
the overall performance via ablation study, including EWFM and PF,
different branches, and different scales.

4.4.1. Ablation of EWFM and PF
To validate the effectiveness of the proposed EWFM and PF in this

study, we conducted ablation experiments on GaoFen-1 dataset. The
experiment utilized PreMix-B with mask generation by Eq. (13), and
employed hard mixing with 4 layers of EWFM blocks. The experimental
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Fig. 14. Visual comparison on WorldView-2 dataset at full-resolution. The bright rectangular box represents the area zoomed in for display.
Fig. 15. Visual comparison on GaoFen-1 dataset at full-resolution. The bright rectangular box represents the area zoomed in for display.
results are shown in Table 4. Clearly, the performance is poorest when
neither EWFM nor PF are used. Adding only EWFM module without
PF yields better results than adding only PF without EWFM. The best
performance is achieved when both are incorporated.

4.4.2. Ablation of multi-branch
To validate the importance of the multi-branch approach proposed

in this study, Table 5 presents the ablation results of the histogram
equalization (HE) branch and the high pass (HP) filtering branch in
PreMix-H. The results indicate that the best performance is achieved
when both branches are enabled simultaneously.
33 
Table 5
Ablation of different branches. ↓: Lower is better. ↑: Higher is better.

Configuration Metric

HP HE PSNR↑ SSIM↑ ERGAS↓ SAM↓

✗ ✗ 42.45 0.9634 0.967 0.0186
✓ ✗ 43.17 0.9679 0.897 0.0175
✗ ✓ 43.49 0.9685 0.879 0.0172
✓ ✓ 43.62 0.9697 0.863 0.0169
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Fig. 16. Visual comparison on IKONOS dataset at full-resolution. The bright rectangular box represents the area zoomed in for display..
Fig. 17. On the influence of the threshold 𝛽.
Table 6
Ablation of different scales. ↓: Lower is better. ↑: Higher is better.

Configuration Metric

PSNR↑ SSIM↑ ERGAS↓ SAM↓

1x 41.72 0.9590 1.039 0.0198
1x,2x 43.18 0.9679 0.891 0.0175
1x,2x,4x 43.62 0.9697 0.863 0.0169

4.4.3. Ablation of multi-scale
To validate the importance of multi-scale inputs, Table 6 presents

the ablation results on different scales of inputs in PreMix-H. The results
indicate that the best performance is achieved when the original scale,
scale of 2×, and scale of 4× are used simultaneously.

4.5. Parameter analysis

To validate that the mask generation method proposed in this study
is superior to the commonly used sigmoid function and that hard
mixing is an effective strategy, we compared the impact of different
mask generation methods on the predicted results. Additionally, we
analyzed the influence of the number of layers in EWFM and the size
of the prediction kernel in PF in PreMix-B on the results.

Fig. 17 presents a comparison between manually setting the thresh-
olds in the step function and utilizing the proposed trainable thresholds.
Enabling the hard mixing strategy with trainable thresholds yields
even better results, demonstrating the effectiveness of the proposed
method. Fig. 18 compares the PSNR under different mixing strategies
34 
Fig. 18. On the influence of mask generation functions.

on GaoFen-1, with EWFM set to a depth of 2. It can be observed that,
compared to the sigmoid, 𝚃𝚊𝚗𝚑(𝚁𝚎𝙻𝚄(𝑥)) exhibits better performance,
highlighting the importance of sparse activation. To further analyze
the impacts of different mask generation methods, we provide visual
images of masks averaged across all channels generated by representa-
tive approaches, as shown in Fig. 19. 𝛽 in 𝚂𝚒𝚐𝚗(𝜎(𝑥)) is manually set to
0.3. The results align with our previous analysis: masks generated by
sigmoid tend to have similar values at each layer, while 𝚃𝚊𝚗𝚑(𝚁𝚎𝙻𝚄(𝑥))
produce more distinctive values at each layer. The poor performance of
manually set thresholds is attributed to the masks gradually converging
to 0 or 1 as the depth increases.
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Fig. 19. Visualization of masks. Masks generated by the Sigmoid function exhibit
a tendency to possess similar values, whereas the composition 𝚃𝚊𝚗𝚑(𝚁𝚎𝙻𝚄(𝑥)) yields a
broader range of values. The suboptimal performance of manually set thresholds results
from converging towards binary values of 0 or 1.

Figs. 20 and 21 show the impact of different numbers of EWFM
layers and different sizes of predictive kernels on the predicted results.
Generally, as the number of layers increases, the model performance
improves. However, a similar assertion does not hold true for the size
of the predictive kernel. The model achieves the best performance when
the predictive kernel size is 5, but a significant performance drop occurs
with further increases in kernel size. This could be due to the local
spatial correlation of images, where excessively large kernels struggle
to learn relationships across larger areas, leading to suboptimal results.
On the other hand, the number of parameters and computational cost of
the proposed model increase linearly with the number of EWFM blocks.
However, it exhibit a quadratic complexity with the increase in kernel
size. In summary, increasing the number of EWFM layers is a more
economical and effective choice compared to enlarging the kernel size.

Regarding the determination of the optimal number of EWFM layers,
it is related to multiple factors, such as the distribution of datasets
and the available computational resources. Firstly, larger datasets with
greater complexity may require a higher number of EWFM blocks to
effectively process the complicated information. Conversely, smaller
and less complex datasets could suffer from overfitting if an excessive
number of EWFM layers are employed. According to Occam’s Razor, a
trade-off must be made between the complexity of the model and its
effectiveness. The more complex the model, the stronger its fitting ca-
pability, but also the stronger its memorization ability, which can lead
to a significant decline in generalizability. In such cases, simpler models
may demonstrate superior performance. Secondly, neural networks are
35 
Fig. 20. On the influence of the number of EWFM layers.

Fig. 21. On the influence of the size of predictive kernels.

inherently classified as black-box optimization models. The number of
layers of EWFM block is a key hyperparameter which typically neces-
sitates fine-tuning based on empirical evidence. Alternatively, neural
architecture search (NAS) (Elsken et al., 2019) can be utilized to au-
tonomously determine the optimal count of EWFM blocks. Nonetheless,
this approach inevitably requires additional time and computational
resources. Compared with automatic search, another solution is to
determine the number of EWFMs through empirical experiments as
well as considering preconditions such as dataset characteristics and
computility.

4.6. Discussion of limitation

One inherent limitation observed in the pansharpening process is
the loss of detailed spectral information of small objects (see the red
car in Fig. 13). Despite advancements in predictive filtering for HRMS
generation, the challenge of accurately recovering the correct spectrum
of small objects remains a common open issue across all models. The
LRMS may lack sufficient spatial resolution to capture fine details of
small objects, consequently affecting the ability of the predicted HRMS
to accurately restore their spectral characteristics. This inherent limita-
tion highlights the need for further research and innovative techniques
to address the accurate reconstruction of spectral information for small
objects. Future works may consider strategies for spectral preservation
and strive to design a framework to enhance the recovery of spectral
information of small objects.

5. Conclusion

In this study, we proposed a pansharpening method based on pre-
dictive filtering technique aimed at minimizing information loss and re-
ducing spatial and spectral distortions. By introducing the fine-grained
feature fusion method EWFM and a multi-scale multi-branch progres-
sive filtering network, we achieved efficient feature mixing of LRMS
and PAN, as well as more accurate prediction kernel acquisition, and
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ultimately resulted in superior performance. In both simulated experi-
ments and full-resolution experiments, our proposed model excelled in
various evaluation metrics, particularly showing significant improve-
ments in PSNR and SSIM. Compared to other DL-based models, our
model demonstrated outstanding performances in terms of effective-
ess, parameter count, and computational cost. Further ablation studies
onfirmed the effectiveness of the proposed approach and underscored
he importance of EWFM and PF modules. Our model showcases inno-
ation and superiority in the field of pansharpening, providing valuable
nsights for future research and applications.

For future work, we aim to explore even more refined feature
fusion methods and continue optimizing the model structure to enhance
efficiency and accuracy. Additionally, we plan to consider extending
he application of this predictive filtering technique to other remote
ensing domains, aiming for broader impact and utility.
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