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Abstract—The surge of deep learning has catalyzed consider-
able progress in self-supervised Hyperspectral Anomaly Detec-
tion (HAD). The core premise for self-supervised HAD is that
anomalous pixels are inherently more challenging to reconstruct,
resulting in larger errors compared to the background. However,
owing to the powerful nonlinear fitting capabilities of neural
networks, self-supervised models often suffer from the Identity
Mapping Problem (IMP). The IMP manifests as a tendency
for the model to overfit to the entire image, particularly with
increasing network complexity or prolonged training iterations.
Consequently, the whole image can be precisely reconstructed,
and even the anomalous pixels exhibit imperceptible errors,
making them difficult to detect. Despite the proposal of several
models aimed at addressing the IMP-related issues, a unified
descriptive framework and validation of solutions for IMP remain
lacking. In this paper, we conduct an in-depth exploration to
IMP, and summarize a unified framework that describes IMP
from the perspective of network optimization, which encompasses
three aspects: perturbation, reconstruction, and regularization.
Correspondingly, we introduce three solutions: superpixel pooling
and upooling for perturbation, error-adaptive convolution for
reconstruction, and online background pixel mining for regular-
ization. With extensive experiments being conducted to validate
the effectiveness, it is hoped that our work will provide valuable
insights and inspire further research for self-supervised HAD.
Code: https://github.com/yc-cui/Super-AD.

Index Terms—Hyperspectral anomaly detection, identity map-
ping, deep learning, self-supervised neural networks

I. INTRODUCTION

Hyperspectral anomaly detection (HAD) aims to identify
pixels or regions in a hyperspectral image that exhibit spec-
tral signatures significantly different from surroundings [1–3].
Traditional methods for HAD have relied heavily on statistical
approaches, such as the Reed-Xiaoli (RX) [4, 5] detectors,
collaborative representation (CR) [6, 7] and low-rank represen-
tation (LRR) [8, 9]. These methods, while effective in certain
scenarios, often struggle with the complexity and variability of
real-world hyperspectral data, leading to suboptimal detection
performance [8]. Compared to traditional methods, the advent
of parameterized neural networks for self-supervised learning
[10–16], has emerged as a promising approach in HAD. The
core premise is that the background, comprising the majority
of the image, can be approximated well by the model, while
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anomalies, being spectrally distinct, cannot be accurately rep-
resented by the learned background model [8, 17]. However,
self-supervised models in HAD face a significant challenge
known as the Identity Mapping Problem (IMP), which has
been extensively mentioned in [15, 12, 11, 13, 17, 18]. The
IMP arises from the powerful nonlinear fitting capabilities of
deep neural networks, which can lead to overfitting to the entire
image dataset. As the complexity of the network increases or
the number of training iterations grows, these models tend
to reconstruct both the background and anomalies with high
fidelity, resulting in imperceptible errors for anomalous pixels
[19]. Despite the introduction of various models attempting to
tackle IMP-related issues, a comprehensive analytical frame-
work and a unified validation of solutions for IMP in the
context of self-supervised HAD are still missing, lacking a
holistic view of the problem.

In this paper, we aim to fill this gap by conducting an in-
depth exploration to the IMP. We propose a unified frame-
work that describes the IMP from the perspective of network
optimization, encompassing three key aspects: perturbation,
reconstruction, and regularization. Each aspect corresponds
to a specific solution that we introduce. Through extensive
experiments on various hyperspectral datasets, we validate the
effectiveness of our proposed solutions and demonstrate how
they collectively contribute to overcoming the IMP.

II. METHODOLOGY

A. Unified Perspective for Self-supervised HAD

In the context of self-supervised HAD, we address the IMP
by proposing a unified framework that encompasses perturba-
tion, reconstruction, and regularization. Given a hyperspectral
image X ∈ Rh×w×c containing anomalous pixels, we utilize a
neural network F parameterized by θ to reconstruct the image.
We summarize the optimization process of a theoretically
well-performing neural network using the following unified
formulation:

θ̂ = argmin
θ

L
(
F
(
P (X) , M̂; θ

)
,X

)
+ λR(M̂), (1)

where L(·, ·) denotes the reconstruction loss (commonly l1 or
l2), and M̂ is the estimated anomaly map from the previous
iteration. The critical components of gaining insights into
IMP include the data perturbation operation P(·), the guided

https://orcid.org/0009-0002-5179-6232
https://orcid.org/0000-0003-3292-8551
https://github.com/yc-cui/Super-AD


Superpixel Pooling Self-Attention × L Superpixel Uppooling

Perturbation 𝓟 : Superpixel Pooling and Uppooling

Reconstruction 𝓕 : Error-Adaptive Convolution 𝐞!"[𝑞]
Pixel Errors First Order Difference Sort Threshold

𝑞

Potential Background Errors𝑞 = 𝑎𝑟𝑔max
#
	{𝑒#$% − 𝑒#}𝐞!" = 𝑠𝑜𝑟𝑡(𝐞!)

Ignored Errors

𝑞

𝑞

SLIC

…

M
at

M
ul

Sc
al

e

So
ftM

ax
M

at
M

ul

Li
ne

ar

K
Q

V

… …

… … … … … …

Detach

FlattenSort

Convolution Kernel

n

k

Match

Selected Pixels

Filter by Threshold

Regularization 𝓡 : Online Background Pixel Mining

𝑆%

𝑆&

𝑆'

𝑣%

𝑣&

𝑣'

𝐊

Uppooled Feature	𝐔 HSI 𝐗Reconstructed 𝐗;

Detection Map 𝐌;𝐌;𝒩(*,,)𝒟 𝑥, 𝑦 = 𝑎𝑟𝑔	sort 𝐌;𝒩 *,, [: 𝑘&]

Candidate Window
𝐅Convolve All Windows of

𝐞%

𝐞&

𝐞'

𝐅H𝒩(*,,)

HSI 𝐗

𝑙! Norm
Dot Product

𝐌; Superpixel

Fig. 1: Our proposed unified framework for self-supervised HAD (Zoom in for better view).

reconstruction function F(·, ·; θ), and the regularization term
R(·). λ balances the contribution of the regularization.

1) Perturbation: The data perturbation operation P(·) is
designed to perturb the spectral information. Applying per-
turbations to obscure the information of anomalous spectra
before they can influence the network’s reconstruction process
is a straightforward strategy to mitigate the IMP. The random
masking strategy in SMCNet [14] and AETNet [20], the use
of noise in AutoAD [10] and BSDM [21], etc., are specific
perturbation instances. The blind spot network series, BS3LNet
[17], BockNet [13], PDBSNet [11], DirectNet [15], etc., can
actually be considered a form of perturbation, which can
be viewed as applying a mask to the central pixel during
convolution.

2) Reconstruction: The reconstruction function F(·, ·; θ)
leverages the estimated anomaly map M̂ ∈ Rh×w from the
previous iteration to guide the forward process of the network.
Given the premise that anomalous spectra are difficult to
reconstruct, the reconstruction error from the previous iteration
can be treated as a confidence measure for the anomaly map.
By designing a suitable weighting function for M̂, we can
enhance the error associated with anomalous spectra while
diminishing the error related to the background, leading to a
more accurate anomaly map in subsequent iterations and thus
mitigating the IMP. For instance, BiGSeT [12] and MSNet
[22] utilized the dot product to modify the reconstruction
results. AutoAD [10], DeepLR [23], and S2DWMTrans [24]
employed adaptive weights to alter the gradients during the
backpropagation.

3) Regularization: This term imposes constraints on the
estimated anomaly map to prevent the IMP. The weight
coefficient λ balances the contributions of the reconstruction
loss and the regularization term. In the optimization process of
the neural network, this term is typically formulated as a loss
function that imposes additional constraints on the anomaly
map. For instance, BiGSeT [12] and MSNet [22] applied the
second-order Laplacian of Gaussian (LoG) operator to sup-
press anomalies. DeepLR [23] and RSAAE [25] applied a low-
rank regularized loss to constrain the network to approximate
the low-rank background. However, a common challenge in
existing methods is the difficulty in determining the balance
coefficient λ between reconstruction and regularization.

Although each part presents various methods, their limited
consideration of the reconstruction process from a holistic
perspective of network optimization results in constrained
performance. In this paper, we meticulously designed these
three key aspects, and experiments prove that our approach
can achieve optimal results (see Fig. 1).

B. Design of the Perturbation Operation P
Masking [14, 20, 17, 13, 11, 15] and noise [10, 21] cannot

ensure the total elimination of anomalous spectra before sent
into the network. To this end, we propose a new perturba-
tion strategy, i.e., superpixel pooling and unpooling (dubbed
as SPP). Specifically, we first use Simple Linear Iterative
Clustering (SLIC) [26] to segment the hyperspectral image
into superpixels, and then apply average pooling to each
region block to retain the average feature information. Since
anomalies occupy a small proportion, they are easily wrapped
in pixel blocks surrounded by the background. Due to the
average pooling strategy, the block information will contain
mostly background spectra while ignoring the anomalous
spectra, which prevents the anomalous spectra from being
reconstructed, thereby mitigating the IMP. Meanwhile, for
the extracted all blocks, we use the self-attention mechanism
[27, 28] to perform spectral reconstruction, learning the rela-
tionship between the blocks. Finally, all blocks will perform
uppooling to revert to original size. Compared to masking
[14, 20, 17, 13, 11, 15] and noise [10, 21] strategies, SPP
effectively encapsulates anomalous pixels within background-
dominated blocks, thereby preventing their influence on the
reconstruction process.

Formally, given a hyperspectral image X ∈ Rh×w×c,
SPP(X) can be described as follows. Firstly, obtaining a series
of superpixel blocks using the SLIC [26] algorithm,

S = SLIC(X), (2)

where S = {S1, S2, · · · , Sm}, Si represents the i-th super-
pixel. Then, we apply average pooling to each superpixel to
obtain the feature vectors V = {v1, v2, · · · , vm}. The pooling
process can be expressed as,

vi =
1

|Si|
∑
p∈Si

Fp, (3)

where Fp denotes the feature vector of pixel p used in
superpixel pooling and |·| is the cadinality of set (# of pixels).
After forward the self-attention [27, 28], the feature vector will
be restored to its original shape through uppooling,

U(x, y) =
∑
vi∈V

vi · 1pxy∈Si
, (4)

where U ∈ Rh×w×c is the uppooled feature. 1pxy∈Si is an
indicator function that is 1 if p in (x, y) belongs to Si, and 0
otherwise.

C. Design of the Reconstruction Function F
Commonly, existing designs directly use the estimated

anomaly map as a weight [10, 12, 22–24], which still al-
low anomalous pixels to affect the reconstruction process. In



contrast, we propose a novel guided reconstruction mecha-
nism termed error-adaptive convolution (dubbed as AdaConv),
which maximizes the non-utilization of anomalies. AdaConv
performs dynamic convolution only on pixels that are most
likely to be non-anomalous based on anomaly probability from
the previous iteration.

Specifically, given a coordinate (x, y), we get the indices of
all elements of a candidate window of size n× n,

N (x, y) = {(i, j) |i ∈ [x− n− 1

2
, x+

n− 1

2
],

j ∈ [y − n− 1

2
, y +

n− 1

2
]}.

(5)

For the estimation of the anomaly map obtained in the
previous iteration, we sort the probabilities (or errors) ascend-
ingly, and take the indices corresponding to the smallest top
k2 elements, where k2 is the number of trainable parameters
in the convolution kernel and k ≤ n,

D(x, y) = argsort(M̂N (x,y))[ : k
2]. (6)

Finally, convolve the feature map with elements taken from
the corresponding indices in D(x, y),

F′(x, y) = FD(x,y) ∗K

=

k∑
i=1

k∑
j=1

F(di, dj) ·K(i, j),
(7)

where F′ is the feature obtained by AdaConv, and K is the
trainable kernel with size of k × k. The uppooled features
are reconstructed to the original image by performing a dot
product with features extracted using AdaConv,

X̂t = U⊙ F′. (8)

where t represents the current iteration. l2-norm is employed
to calculate the anomaly score of pixel p,

M̂t
p =

∥∥∥X̂t
p −Xp

∥∥∥
2
, (9)

and the estimated detection map is used to guide the recon-
struction process in the next iteration,

X̂t+1 = F(SPP(X), M̂t; θ). (10)

D. Design of the Regularization Term R
The regularization term imposes constraints on the anomaly

map during the backward propagation of errors. However,
determining the balance coefficient between the reconstruc-
tion and regularization terms remain challenging. We propose
Online Background Pixel Mining (dubbed as OBPM) loss,
which simultaneously achieves more efficient reconstruction
and provides stronger constraints on anomalies. OBPM in-
corporates two key strategies: (1) For the reconstruction of
the background, the more difficult the background is to re-
construct, the larger the gradient will be contributed. Gradient
will be scaled exponentially with the reconstruction error. (2)
For the regularization of anomalies, we enforce the disregard
of gradients generated by potential anomalies. The two aspects
ensure that the model focuses on reconstructing more complex
background while avoiding the influence of anomalies that
could distort the training process.

1) Reconstructing Background: Given the absolute back-
ground reconstruction error x, we desire that its backpropaga-
tion yields an exponentially scaled gradient,

g(x) = eβx + α, (11)

here, the rate of exponential growth is determined by β,
whereas α sets the minimum gradient. Thus, the reconstruction
loss can be formulated as,

l(x) = eβx/β + αx. (12)

2) Regularizing Anomaly: The ideal solution is to not allow
anomalies to contribute any gradients, i.e., discarding potential
anomalies. Specifically, for superpixel Si, the reconstruction
error ei will be firstly sorted ascendingly,

ei
′ = sort(ei) = [e1, e2, . . . , e|Si|], (13)

where e1 ≤ e2 ≤ . . . ≤ e|Si|. Since the basic assumption
is that the anomalies has significantly larger errors than the
background, we set the index with the largest error change as
the boundary,

q = argmax
j

{ej+1 − ej}, j = 1, 2, . . . , |Si| − 1, (14)

where ej+1 − ej represents the first order difference in sorted
error, reflecting the magnitude of the error change. q is the
index where the error changes the most. Any error greater
than ei

′[q] will be ignored. Note that this will cause some
background errors to be ignored, but since we provide expo-
nential gradients, the remaining background can still provide
enough gradients for network optimization.

Combining the reconstruction loss, the OBPM loss of an
error x which belongs to Si is expressed as follows,

OBPM(x∈Si
) =

{
eβx/β + αx, if x ≤ ei

′[q]

0, otherwise.
(15)

III. EXPERIMENTAL RESULTS

A. Experimental Settings
We evaluate the performance of our methods using four

widely recognized hyperspectral datasets: Coast, San Diego,
HYDICE, and Pavia. Eight commonly-recognized models in-
cluding tranditional RXD [4] and CRD [6], and self-supervised
methods with diverse architectures including GAED [29],
MSNet [22], PDBSNet [11], PTA [30], AutoAD [10], and
RGAE [31], were compared with the proposed methods. The
network architecture was implemented using PyTorch. All
experiments were conducted on an NVIDIA GeForce RTX
2080 Ti with 11 GB of memory. Access the source code:
https://github.com/yc-cui/Super-AD.

B. Detection Performance Comparison
1) Quantitative Comparison: As shown in Table I, our

model achieved state-of-the-art results in terms of Area Under
the Receiver Operating Characteristic Curve (AUC) across the
majority of the datasets, with a slight decrease than AutoAD
[10] and PDBSNet [11] in performance on the HYDICE
dataset. The comparative analysis of the Receiver Operat-
ing Characteristic (ROC) curve presented in Fig. 2 and the
separability maps shown in Fig. 3 across all four datasets
further validates the superior ability of the proposed model
to distinguish anomalies from background compared to other
models.

https://github.com/yc-cui/Super-AD


TABLE I: AUC values of the nine considered detectors on
four datasets. The best performance is shown in bold and the
second best is underlined.

Model Coast San Diego HYDICE Pavia Average

RXD [4] 0.9906 0.9089 0.9933 0.9537 0.9616

CRD [6] 0.9910 0.8608 0.9975 0.9167 0.9415

GAED [29] 0.9779 0.9866 0.9845 0.9362 0.9713

MSNet [22] 0.9946 0.9907 0.9993 0.9889 0.9934

PDBSNet [11] 0.9950 0.9820 0.9996 0.9892 0.9914

PTA [30] 0.6992 0.9683 0.8659 0.9061 0.8599

AutoAD [10] 0.9938 0.9849 0.9998 0.9818 0.9901

RGAE [31] 0.9709 0.6991 0.7064 0.9053 0.8204

Ours 0.9982 0.9929 0.9993 0.9911 0.9954
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Fig. 2: ROC curves of nine considered detectors on four
datasets (Zoom in for better view).
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Fig. 3: Separability maps of nine considered detectors on four
datasets (Zoom in for better view).

Fig. 4: Colored detection maps obtained by different methods
on San Diego dataset (upper) and Coast dataset (lower). Please
zoom in for better view.

2) Visual Comparison: Fig. 4 illustrates the anomaly de-
tection maps for the San Diego and Coast datasets. Among
all the evaluated models, only MSNet [22] and AutoAD [10]
demonstrate competitive performance to our approach. While
MSNet [22] yields impressive results on the Coast dataset, it
struggles to identify anomalous pixels within the San Diego
dataset. For AutoAD [10], although it also exhibited strong per-
formance, our model assigns higher probabilities to anomalous
points compared to AutoAD [10]. This clearly indicates that
the proposed model effectively differentiates anomalies from
the background, underscoring the efficacy of our method.

C. Ablation Study and Parameter Analysis

1) Perturbation Operation SPP: An ablation study was
conducted to evaluate the contribution of the superpixel pool-
ing and uppooling mechanism, as shown in Table II. The
results clearly demonstrate the significant impact of SPP on the
model’s performance, with a noticeable increase in AUC scores

TABLE II: Ablation of perturbation operation SPP.

Coast San Diego HYDICE Pavia Average

w/o SPP 0.9938 0.9905 0.9960 0.9847 0.9913

w/ SPP 0.9982 0.9929 0.9993 0.9911 0.9954
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Fig. 5: Ablation studies and parameter analysis conducted on
San Diego dataset for (a) AdaConv and (b) OBPM.

when SPP is incorporated. This indicates that SPP plays a
crucial role in mitigating the IMP by encapsulating anomalous
pixels within background-dominated blocks, thereby prevent-
ing their influence on the reconstruction process.

2) Reconstruction Function AdaConv: Fig. 5a present the
results of ablation studies and parameter analysis on the recon-
struction function AdaConv. Optimal performance is achieved
with a window size of n = 9 and a kernel size of k = 3,
yielding an AUC of 0.9946. We noticed AdaConv exhibits
sensitivity to large kernels, such as {7, 9, 11, 13}, possibly due
to the incorporation of irrelevant information by distant pixels,
which diminishes the local correlation with the center pixel.
As shown in the last row of Fig. 5a, without AdaConv, the op-
timal AUC is 0.9874. This indicates that AdaConv effectively
targets non-anomalous pixels, enhancing the model’s ability
to reconstruct the background while disregarding anomalies,
thereby preventing IMP and achieving superior results.

3) Regularization Term OBPM: Fig. 5b illustrates the ef-
fectiveness of the OBPM. Our method achieved an optimal
AUC of 0.9961 compared to 0.9906 achieved by the commonly
used l1 or l2 loss. The OBPM strategy is shown effective
on reconstructing complex backgrounds while disregarding
potential anomalies. The parameter sensitivity analysis reveals
that the proposed OBPM performs consistently well within a
range for β ∈ [0.5, 2] and α ∈ [0, 5], indicating its robustness
and stability across different parameter settings.

IV. CONCLUSION AND DISCUSSION

This paper presents a novel approach to address the identity
mapping problem in self-supervised HAD, which is grounded
in a unified framework that encompasses three critical aspects:
perturbation, reconstruction, and regularization. Through ex-
tensive experiments on various hyperspectral datasets, we have
demonstrated the effectiveness of our proposed solutions, in-
cluding superpixel pooling and upooling, error-adaptive convo-
lution, and online background pixel mining. Our work presents
a significant step forward in the field of self-supervised HAD,
offering a robust and effective approach to tackle the chal-
lenges posed by the IMP. It is hoped that this paper will
provide valuable insights and inspire further research for self-
supervised HAD.
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