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Abstract—Hyperspectral images (HSI) inherently face a trade-
off between spatial resolution and spectral resolution due to
the limitations of imaging principles. To rapidly obtain remote
sensing images with both high spatial and high spectral reso-
lution, unsupervised deep learning methods for fusing HSI and
multispectral images (MSI) have achieved remarkable progress
in recent years. However, existing studies often overlook the
issue of high-frequency information loss in the fused images. To
address this limitation, we propose a Prior-based three-stage un-
supervised Invertible neural Fuse Network (PIFNet). Specifically,
the framework consists of three key modules: prior information
extraction, spectral channel mapping, and detail feature fuse. In
particular, the detail feature fuse module leverages an invertible
neural network to prevent information loss through mutual
generation of input and output features. Experimental results
on simulated datasets demonstrate that the PIFNet outperforms
existing unsupervised deep learning methods, highlighting its
potential and effectiveness in HSI-MSI fusion tasks.

Index Terms—remote sensing, hyperspectral image,image
fusion,super-resolution, deep learning, invertible neural network

I. INTRODUCTION

Hyperspectral remote sensing images possess a unique
data structure that integrates spatial and spectral information,
enabling a wide range of applications [1]. However, due to
the inherent limitations of imaging principles, there exists
an inevitable trade-off between spatial resolution and spectral
resolution, resulting in HSI generally having low spatial res-
olution [2]. This limitation significantly hinders the practical
applications of HSI. Therefore, fusing high spatial resolution
MSI (HrMSI) with low spatial resolution HSI (LrHSI) presents
an effective solution to address this challenge.

Current fusion methods can be broadly categorized into two
types: traditional methods and deep learning-based methods.
Traditional methods, including pan-sharpening, Bayesian fu-
sion, and matrix decomposition [3]. Ren et, al. developed a
novel joint fusion model based on spectral unmixing, tailored
for different typical ground objects [4]. Rely heavily on exten-
sive prior knowledge, which limits their generalization capa-
bility. Deep learning-based methods involve constructing deep

neural networks and training the models using large amounts
of data. Ultimately, the input image is fed into the network
to obtain the target image. Deep learning-based methods can
be further divided into supervised and unsupervised learning
approaches. Considering that the target images are typically
unavailable in real-world applications, supervised deep learn-
ing fusion methods face the challenge of lacking appropriate
training datasets [5], which restricts their applicability. Conse-
quently, unsupervised deep learning methods have emerged as
the mainstream approach in recent years. For instance, inspired
by spectral unmixing, Yao et, al. designed a novel coupled
unmixing network with a cross-attention mechanism, referred
to as CUCaNet, to enhance the spatial resolution of LrHSI
using HrMSI [6]. Zheng et, al. proposed an unsupervised
deep learning method named HyCoNet to address the fusion
problem under unknown Spatial Response Function (SRF)
and Point Spread Function (PSF) conditions [3]. Similarly,
Liu et, al. designed a spectral diffusion model to capture the
spectral distribution of HSI and leveraged the prior knowledge
of both MSI and HSI to optimize the generative direction of
the model [7]. However, existing models primarily rely on the
forward propagation of Convolutional Neural Network (CNN)
for image fusion or generation, which often results in the
irreversible compression or loss of high-frequency information
within the images [8].

To address this issue, we propose a three-stage unsupervised
invertible neural network based on image prior knowledge.
Specifically, in the first stage, similar to previous works, the
model learns the PSF and SRF information of the fused images
to facilitate the design of the loss function for subsequent
fusion networks. In the second stage, spectral mapping from
MSI to HSI is performed through weight sharing. In the third
stage, an Invertible Neural Network (INN) is employed to
extract detailed features from the fused images, enabling loss-
less information transmission and effectively preserving the
high-frequency information of the original images. Through
these three stages, our network achieves high-quality image
reconstruction within an unsupervised framework.
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Fig. 1: The overall architecture of PIFNet, (a) the three-stage workflow diagram of the PIFNet, (b) the detailed architecture of
the super-resolution module in the second stage, (c) the detailed architecture of the detail fusion layer in the third stage, and
(d) the explanation of some symbols used in the workflow diagram.

II. METHODOLOGY

Our proposed PIFNet consists of three stages: the prior
information extraction stage, the spectral channel mapping
stage, and the detail feature fusion stage. Fig.1(a) illustrates
the detailed workflow. Specifically, the LrHSI and the HrMSI
are used as inputs to the model. The fusion process generates
a high-spatial-resolution hyperspectral image (HrHSI) as the
output.

A. Prior Information Extraction Stage

The first stage primarily consists of two components,
namely the spatial prior block and the spectral prior block,
which are denoted as A(·) and E(·), respectively. These two
blocks are designed to learn the prior information of SRF
and PSF required for spatial and spectral downsampling of
the images. Specifically, the HrMSI M ∈ RCm×Hm×Wm

is spatially downsampled to obtain a low-spatial-resolution
multispectral image (LrMSI) MA

m ∈ RCm×Hh×Wh , while
the LrHSI M ∈ RCh×Hh×Wh is spectrally downsampled to
produce another LrMSIME

m ∈ RCm×Hh×Wh :

MA
m = A(M), ME

m = E(H) (1)

Among them, A(·) and E(·) are two learnable weight
functions. Referring to the idea of the degradation model,
the input LrHSI and HrMSI are highly registered images of
the same scene. Therefore, the two generated LrMSI should
remain consistent. Based on this condition, the loss function
for the first stage is designed as follows:

LS1
=

1

N

N∑
i=1

∣∣(MA
m −ME

m

)∣∣ (2)

Where N represents the total number of data points in the
three-dimensional image. The L1 loss function is employed to
constrain the absolute error between the two images, ensuring
their consistency.

B. Spectral Channel Mapping Stage

Inspired by the work of Li et, al. [9], the fusion prob-
lem is reformulated as a spectral mapping problem. The
specific process of spectral super-resolution is illustrated in
Fig.1(b). Two consistent spectral super-resolution networks
are utilized to perform spectral super-resolution on the two
LrMSI generated in the first stage, reconstructing the LrHSI
MR1

m ∈ RCh×Hh×Wh and MR2
m ∈ RCh×Hh×Wh .

MR1
m = R1(MA

m), MR2
m = R2(ME

m) (3)

Where R1(·) and R2(·) represent the spectral super-
resolution networks. The two super-resolved images are con-
strained with the initially input LrHSI, and the loss function
for the second stage is defined as follows.

LS2 =
1

N

N∑
i=1

∣∣(H −MR1
m

)∣∣+ 1

N

N∑
i=1

∣∣(H −MR2
m

)∣∣ (4)

After completing the training of the network in the
stage 2 using the aforementioned process, the initial HrMSI



M is super-resolved into two simulated HrHSI HR1
m ∈

RCh×Hm×Wm and HR2
m ∈ RCh×Hm×Wm through the shared

weights of these two networks.

HR1
m = R1(M), HR2

m = R2(M) (5)

The two simulated HRHSI will be used as inputs in the next
phase, where they will undergo fusion and feature extraction
to get the final result.

C. Detail Feature Fusion Stage

We utilize INN to extract high-frequency features from the
images, enabling the lossless transmission of information Fig.
1(c) illustrates the specific data flow in the stage 3. Initially,
the two simulated HrHSI HR1

m and HR2
m obtained in the

second stage are fused to another HrHSI HR
m ∈ RCh×Hm×Wm ,

followed by the extraction of high-frequency detail features
from the fused image.

HR
m = cat(HR1

m , HR2
m ), HF1

out = F1(HR
m) (6)

Among them, cat(·) denotes tensor concatenation, F1(·)
represents the function of the first INN layer, and HF1

out ∈
RCh×Hm×Wm is the output of the first INN layer. The input
and output results of the k-th INN can be expressed as:

HFk
out = Fk(H

Fk−1
m ) (7)

Therefore, the final fused result Hout ∈ RCh×Hm×Wm

obtained after passing through n INN is:

Hout = F (HR
m) = Fn(H

Fn−1
m ) (8)

We then perform downsampling on Hout using the SRF
and PSF downsampling information learned in the stage 1,
resulting in LrHSI HA

out ∈ RCh×Hh×Wh and the HrMSI
HE

out ∈ RCm×Hm×Wm .

HA
out = A(Hout), ME

out = E(Hout) (9)

The similarity between the downsampled image and the
input image is computed to constrain the fusion quality of
Hout. Therefore, the loss function for the stage 3 is expressed
as follows:

LS3
=

1

N

N∑
i=1

∣∣(HA
out −H

)∣∣+ 1

N

N∑
i=1

∣∣(ME
out −M

)∣∣ (10)

We employed the simple and commonly used L1 loss as
the loss function and achieved good convergence without
imposing excessive constraints on the network.

III. EXPERIMENTAL RESULTS

A. Experimental Data and Setup

We selected the publicly available Pavia University dataset
as a benchmark for comparison. To simulate the hyperspectral
dataset, the original image, with a size of 610 × 340 pixels,
was downsampled by a factor of 8 in spatial resolution.
Consequently, a region of size 608× 336 pixels was selected
for simulation. LrHSI were generated using a Gaussian blur
operation as the downsampling operator, while HrMSI were
produced by downsampling the spectral information of the
image using the QuickBird SRF.

Five state-of-the-art unsupervised methods were selected
for comparison, including MIAE [10], UDALN [9], SURE
[11], M2U-Net[12], and SDP [7]. In addition, five quantitative
metrics were employed for evaluation: Spectral Angle Mapper
(SAM), Peak Signal-to-Noise Ratio (PSNR), Error Relative
Global Dimensional Synthesis (ERGAS), Structural Similarity
Index (SSIM), and Universal Quality Index (UQI).

B. Results and Analysis

Table I presents the quantitative evaluation results. Our
method, by employing INN to preserve high-frequency in-
formation within the image, provides the best overall per-
formance, demonstrating its effectiveness in spectral fidelity,
image quality, and structural preservation. Although it does
not yield the best result in terms of ERGAS, the performance
of our method is very close to the optimal result obtained by
SURE.

TABLE I: The performance of the quantitative evaluation
results. The best performance is shown in bold and the second
best is underlined. ”↓” means smaller is better for this index.
”↑” means bigger is better for this index.

Method SAM↓ PSNR↑ ERGAS↓ SSIM↑ UQI↑

MIAE 2.3855 38.68 0.6262 0.9790 0.9959

UDALN 2.9946 31.80 1.7832 0.9683 0.9792

SURE 2.5105 38.63 0.6239 0.9753 0.9973

M2U-Net 2.4108 42.47 0.8459 0.9752 0.9972

SDP 2.9064 37.51 0.7137 0.9743 0.9962

PIFNet 2.3554 43.17 0.7821 0.9851 0.9974

Fig.2 shows the true color image and pixel-wise SAM
heatmap results on the Pavia University dataset. All methods
successfully generate fusion results. The true color image of
M2U-Net closely matches the ground truth, demonstrating its
effective utilization of inherent information in the degraded
model. Our method exhibits minimal visual differences with
the other four methods. In the heatmap, different colors repre-
sent varying SAM values, with pixels corresponding to smaller
SAM values appearing closer to blue. The SAM heatmap
reveals that the results from our method are generally closer
to blue, indicating higher global spectral fidelity. Notably, in
high-frequency texture regions, such as the detailed textures



0                                                             10° 20° 30° 40°

（a）MIAE （b）UDALN （c）SURE （d）M2U-Net （e）SDP （f）PIFNet （g）GT

Fig. 2: The visual comparison results on the Pavia University dataset, where the first row shows the true color images generated
by the six methods, and the second row displays the pixel-wise SAM heatmap comparison results. (a)MIAE, (b)UDALN,
(c)SURE, (d)M2U-Net, (e)SDP, (f)PIFNet, (g)GroundTruth

marked by red boxes, our method demonstrates a more uni-
form and accurate color distribution, further confirming its
advantage in preserving spatial high-frequency details.

IV. CONCLUSION

This paper proposes a prior-based three-stage unsupervised
invertible neural network (PIFNet). Through the three modules
of prior information mining, spectral channel mapping, and
fusion feature learning, particularly the introduction of INN,
Our method effectively prevents the loss of high-frequency
information. Experimental results on the simulated dataset
demonstrate the effectiveness of our approach in both qual-
itative and quantitative fusion performance.
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