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Abstract—Spatiotemporal remote sensing imaging is one of the
most important ways to continuously monitor the Earth. Due to
some technical limitations, it is still not easy to obtain images with
high-temporal-high-spatial resolution. In this article, we propose
a new spatiotemporal remote sensing image fusion method with
semiblind deep compressed sensing (SDCS). The reconstruction
by SDCS includes two stages: compressed sensing observation
and deep post processing. In the stage of CS observation, we
design a sensing matrix to connect two spatiotemporal sequences.
It can make sure that both the RIP condition of CS and the
correspondence of spatiotemporal features are satisfied at the same
time, and then CS observation provides a good initial estimates. In
the stage of deep postprocessing, it is data-driven, and we designed
a deep CNN architecture with multivariate activation function.
The second stage not only smoothes out the noise but also reduces
the errors from unprecise sampling matrix and compensates for
the image differences caused by different imaging conditions.
The proposed method is tested on two Landsat and MODIS
datasets. Some of state-of-the-art algorithms are comprehensively
compared with the proposed SDCS. The experiment results and
ablation analysis confirm the better performances of the proposed
method when compared with others.

Index Terms—Compressed sensing, data-driven, image fusion,
model-driven.

I. INTRODUCTION

IME-SERIAL remote sensing images have attracted con-
T siderable attention of researchers in recent years. Temporal
and spatial resolutions are two of the most essential character-
istics of remote sensing data. Spatio-temporal remote sensing
image fusion (STRSIF) is a crucial technique in the field of
remote sensing. It combines the advantages of remote sensing
images with different spatial and temporal resolutions and then
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generates fused images with both high spatial and temporal
qualities.

In many remote sensing applications, we often need images
that can accurately represent both the detailed spatial features
and the densely temporal changes of the observed area. How-
ever, due to limitations in sensor technology and costs, a sin-
gle remote sensing image source usually cannot meet these
dual requirements. Some remote sensing satellites, such as
CBERS, SPOTS5, GF2 [1], and Landsat provide data with high-
spatial-low-temporal (HSLT) resolution. Other satellites, such
as MODIS, AVHRR, and SPOTVGT, provide high-temporal-
low-spatial (HTLS) data because of their short revisit cycles.
More and more applications require data with high-spatial-high-
temporal (HSHT) resolution, especially for situations such as
land use/cover mapping, change detection, monitoring ecosys-
tem dynamics, etc.. STRSIF enables us to merge images cap-
tured at different times and with different spatial resolutions,
providing more comprehensive and timely information or DEM
[2], [3] for various fields such as environmental monitoring,
urban planning, agricultural management, disaster prevention,
etc. By integrating temporal and spatial information, we can
better understand the dynamic processes and changes occurring
on the Earth’s surface. Therefore, developing the STRSIF [4]
technology is highly significant [5], [6].

However, due to the limitations of orbit and sensor, it is
challenging to generate remote sensing images with both high
temporal and extreme spatial resolution. Follow the summary
of [7], for remote sensing spatiotemporal fusion, the difficulties
mainly come from three points:

1) in the temporal dimension, the dramatic uncertainty of

land feature change is hard to predict;

2) inthe spatial dimension, the huge difference between high-

resolution images and low resolution; and

3) for different sensors, there are inevitably systematic errors

in the imaging process.

In this article, we analyze some essential problems of the
observation model of remote sensing image and proposed semi-
blind compressed sensing (CS) for image fusion. The rest of the
article is organized as follows: Section II is related works. We
review the observation of imaging in Section III and summarize
three fundamental problems in Section IV and introduce CS in
Section V. In Section VI, the problem definition and variable
definitions are addressed and the proposed method is presented
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in detail and the main flowchart is given. The experiments and
results are shown in Section VII. Finally, we conclude the article
in Section VIII.

II. RELATED WORKS

Current STRSIF algorithms can be roughly divided into sev-
eral categories [8] such as: weight methods, unmixing meth-
ods, Bayesian methods, sparse-learning methods, deep-learning
methods, and hybrid methods, etc.

Weight methods [9], [10], [11], [12], [13], [14] estimate the
change of information through the linear combination of HTLS
pixels according to the weight of time, spectral, and distance,
and then adds the change to the HSLT image. The classical
method in this category is STARFM [9] algorithm. STARFM
assumes an ideal case and designs weights by taking neighbor-
hood HSLT pixels in various factors to obtain an HTHS image.
There are some promotion methods: such as STAARCH [10],
ESTARFM [11], mnESTARFM [12], and ISKRFM [13]. A single
weight-based method cannot ideally deal with STRSIF well
since it assumes a linear relationship basically. The trend is to
combine it with other methods or find the relationship by more
sophisticated models such as Fit-FC [14], which introduces a
regression model based on STARFM’s strategy.

Unmixing methods [15], [16], [17], [18], [19], [20] con-
sider that low spatial resolution pixels are linear mixing of
endmember contained in high spatial resolution images. These
methods generally define endmembers by preclassifying high
spatial resolution images, such as [16] and [21]. Only using
pixel unmixing, the fusion equation is difficult to solve. Some
scholars have combined STARFM and pixel unmixing methods
to carry out spatiotemporal fusion [22], [23]. Based on pixel
unmixing, fusion can be reduced to the inverse problem, which
has a clear physical meaning, and the abrupt details of land types
contained in HTLS images can be recovered to a certain extent.
However, this kind of method focuses more on the relationship
between spectrum and spatial domain. In the time domain, it is
usually assumed that the proportion (abundance) is unchanged
for different substances in the mixed pixel with low spatial
resolution. This assumption of abundance invariance seriously
weakens the ability of the model to coordinate spatiotemporal
relationships, so the final fusion results often show obvious
blocky characteristics similar to the classification map.

Bayesian methods [24], [25], [26], [27], [28] consider that
the STRSIF problem can be regarded as a maximum posterior
problem for solving the optimal state with known observations.
Therefore, how to define the relationship between the input
HTLS and HSLT images and the output HTHS images in the
form of probability becomes the key to this type of method.
For example, covariance functions are used in [24], low-pass
filterings are used in [25], and joint covariances are used in [28].
In general, numerous hyperparameters are often difficult to set
in Bayesian methods.

Sparse representation method mainly uses a specific basis
function to represent image sparsely and fuse them in the trans-
form space. The early research such as SPSTFM [29] introduc-
ing the popular nonanalytic dictionary learning into the study
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of spatiotemporal image fusion. Later improvements include
reducing the number of images and increasing flexibility [29],
adding error boundary normalization [30], introducing structural
sparse [31], etc. The method based on sparse representation
often draws on the training method of double dictionaries in the
superresolution reconstruction method [32]. Under certain con-
ditions, their performance is better than the early linear method
such as STARFM. If the low-resolution data are considered as
the result of downsampling of high-resolution data, then the
problem of sampling reconstruction needs to be considered. In
this case, methods based on CS can be regarded as the extension
of sparse representation methods. Under the CS theory [33], the
reconstruction of the sampled signal no longer depends on the
bandwidth of the original signal, but depends on the structure
of the information in the signal and whether the sensing matrix
meets the isometry constraint (RIP) [33] conditions. In the field
of remote sensing image fusion, multispectral-panchromatic im-
age fusion [34], [35] have employed this idea. There is also some
research which tried to solve the exploration of spatiotemporal
image fusion based on CS [36]. However, these CS methods
mainly focus on the processing of image spatial resolution
relationship, and cannot fully explain the contradiction of spa-
tiotemporal opposition caused by different sampling frequencies
among spatiotemporal remote sensing datasets. Therefore, its
performances are often limited because the resolution difference
is large and the sampling matrix is not totally known.

Deep learning methods draw on the large amounts of data
and the progress of deep learning in superresolution recon-
struction [37] to establish implicit relationships between low
and high resolution images [38]. Deep learning methods have
powerful feature extraction ability with the support of Big Data.
Through the design of network structure and loss function [39],
the adaptability to spatiotemporal fusion can be improved, such
as STFDCNN [40], DCSTFN [41], EDCSTEN [42], StfNet [43],
and BiaSTF [44]. GAN methods show many advantages in
spatiotemporal fusion, such as STFGAN [45], GAN-STFM [46],
and CycleGAN-STF [47]. However, the architecture of gener-
ator or discriminator, the loss function, and feature extraction,
etc., all need to be consider further to adapt for spatiotemporal fu-
sion. Deep-learning based approaches have a lot of potential, but
they also face obvious problems: On the surface, spatio-temporal
fusion in remote sensing often suffers from large resolution
differences, which will lead to unstable results. The deeper
reason is that fusion of spatiotemporal remote sensing data faces
complex contradiction relationship between multiple sampling
sequences. Some existing deep learning frameworks that simply
increase the depth of neural networks or simply focus on the
way of network connections. These architectures do not clearly
reflect the nature of spatiotemporal relationship of multisource
remote sensing images, so that they are not conducive to exerting
the powerful feature learning ability of deep networks.

Hybrid methods [21], [22], [23], [48], [49], [50] are tend to
combine the advantages of several above mentioned methods
to achieve the goal of improving STRSIF accuracy. Methods
such as FSDAF [48] combined with the idea of unmixing
and weighting, which solves the information variation in the
temporal domain (by unmixing method) and spatio domain (by
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spatial interpolation). Another example is STRUM [23], which
directly blends changes in HTLS pixels by Bayesian theory
to estimate changes in HSLT endmembers for STRSIF. In the
future, the forms hybrid methods may be more diverse so that
the advantages of different approaches can be further taken
advantage of.

From another point of view, we can divide abovementioned
methods into two large categories: model-driven methods and
data-driven methods. Model-driven methods such as unmixing
methods [16], CS method [36], and BRDF [51] method are
all with clear physical meaning. On the contrary, data-driven
methods such as deep learning method, they do not take much
emphasis on physical meaning but data features. Although, data-
driven methods (especially deep learning) already show very
promising results, its stability and theory boundary is not as clear
as model-driven methods (such as CS observation model). At the
same time, in fusion process, the large resolution gap, unprecise
sampling matrix, and complex imaging condition etc. always
make the conventional CS approach less effective. Therefore, in
this article, we proposed to connect a blind CS model with deep
learning to form semiblind deep compressed sensing (SDCS).
In this new method, it include two stages: CS observation stage
and deep reconstruction stage, and then the advantages from
both CS observation model and deep feature learning can be
well utilized. In summary, the contributions of this work are:

1) Summarize the imaging model and its three fundamental
problems, and propose that CS as a special form of imaging
model can be combined with deep learning to achieve
fusion.

2) In the CS observation stage, design a sensing matrix
satisfying both sampling mapping and RIP condition to
provide an initial fusion estimation.

3) Inthe deep learning stage, design a deep architecture with
multivariate activation function (MAF) to further improve
the fusion effect.

In the following, we will elaborate on the proposed method

and verify the results based on comprehensive experiments.

III. MODEL OF DEGRADATION FOR REMOTE SENSING

Generally, we can take the process of remote sensing imaging
as the process of signal acquisition. In this process, we get the
signal of the ground object through the sensor. The common
forms of imaging are varied, such as optical, SAR, hyperspectral,
and even point clouds, etc. There are also geoprocesses that
need to be monitored based on special sensors, which are just
discrete signals rather than images. In almost all of them, there
are information losses or damage, so imaging is a degrading
process. As in Fig. 1, most of degradation processes of remote-
sensing images (major in optical systems) can be expressed as

Y=H+X+e=HHy  HX +e¢ (1)

where Y is the degraded and observed image, X is the orig-
inal signal, H is the degradation matrix, and € is the additive
noise. The operator * is the convolution. The noise € is often
assumed as a zero-mean white Gaussian process with variance
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o2. The total degradation H = H,H, - - - Hy, where Hy, is the
degradation by a single factor, for example, H;, H>, and H3
can be the degradation in temporal domain, spatial domain,
spectral domain, etc. Images Y and X can be denoted by vectors,
that Y = [y1,...,yn]7 and X = [21,...,2n]7. HpX is the
matrix-vector form, where H;, is convolution matrix which is
approximated by a block-circulant matrix.

The representation of different types of image degradation,
such as blurring, thin cloud, missing information, noise, shadow,
and downsampling, mainly depends on the assumption on the
degradation matrix Hy. For example, when Hj, is the unit matrix
we consider the image quality improvement as a denoising
problem; when Hy, is the Gaussian like kernel we consider the
image quality improvement as a deburring problem; when Hy,
is the downsampling matrix we consider it as an image fusion
or superresolution problem; when H represents the atmospheric
scattering model we consider the image quality improvement as
a thin cloud removal problem; when the Hy, is the process of
Ray-casting reflection we consider the image quality improve-
ment as a shadow removal problem.

There have developed many different theories and methods
for different degradation model of Hy. H is the result of the
combined action of multiple degradation processes Hp, but
many studies only consider one or a few degradation processes.

IV. THREE FUNDAMENTAL PROBLEMS IN IMAGE
RECONSTRUCTION

Considering the observation model in (1), a general form of
image quality improvement (or reconstruction) problem can be
denoted as

T(H, X) = [IY = H * X3+ 2at(X) + 1id(H) ()

where || — ||3 is Ly norm, 1/(X) is the constraint for image, and
¢(H) is the constraint for transfer function.

Different types of degradation usually vary widely and lead
to different methods of solution. In this article, we believe
that, for all the studies of image quality improvement, there
are always three fundamental problems: 1) transfer function, 2)
regularization schemes, and 3) noise status. In this section, the
three fundamental problems will be comprehensively addressed
in detail.

A. Sensing Matrix (Transfer Function)

Among the three fundamental problems, the sensing matrix
or degradation matrix H is the most important. It is used to
describe the mapping between the observed image (Y') and the
ideal image (X). It represents the most essential characteristics
of the different degradation processes. We usually discriminate
the type of degradations such as blurring, noising, shading,
clouding, etc., based on its observation model.

What is H like and how to define a H for degradation are
often the keys to image reconstruction. First, we have to define
a H for image quality improvements before all things we can
do. For example, for thin cloud removal H is pixelwise form
because the degradation for each pixel has nothing to do with its
neighborhoods; for a deblurring problem, H is a kernel function
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who has far more small support than an image because the
blurring effectiveness usually only extend in a small area; for
fusion or superresolution problem, H may be a downsampling
matrix because we focus on the spatial resolution or spectral
resolution. However, how to define a good Hy, or A is still very
open problem for some type of degradation. Second, it is how to
solve the model with this H. A corresponding solution method
must be developed when H is defined. The most simple one is
denoising when 7 is a unit matrix. For the deblurring problem
and some thin cloud removal problem, 7 cannot be inverse
directly because of its underdetermined characteristics. Since
the rank of H is often smaller than the dimension of H, it is a
singular matrix in most cases. Most image quality improvement
problems are ill-posed or seriously ill-posed problems. H often
is unknown making many observation equations very hard to
solve in nature.

The most famous conclusion about H may be sampling
theorem. The Nyquist—Shannon sampling theorem provides a
sufficient condition for the sampling and reconstruction of a
band-limited signal. The popular CS theory in recent years can
be regarded as an upgraded version of the sampling theorem. CS
believes that data reconstruction is mainly determined by three
factors: the structure of the signal, the way of sampling, and the

Regularization Scheme

Power Balance

Observation model and three fundamental problems. Image fusion is a special form of image quality improvement of generalized form.

algorithm for solving. In this way, we have opened a new door
for data reconstruction research.
In the later chapters of this article, we will discuss in detail
how to carry out STRSIF based on CS theory. We can implement
image fusion from three aspects:
1) A CS observation model is used to describe the mapping
between the observed image (V') and the ideal image (X);

2) The deterministic constraint is obtained by using the spa-
tial position correspondence between the observed image
and the ideal image;

3) The image should be transformed to be sparse, and H need

to meet the requirements of the CS observation model by
randomness or other characteristics.

B. Regularization Schemes

Regularization schemes are used to introduce prior knowledge
and allow a robust approximation of ill-posed inverse prob-
lems, which is the second fundamental problem. Since most
degradation models are seriously ill-posed, the remote sensing
image quality improvement based on (2) will have to employ
regularization to find a stable solution. Both X and #H need
regularizations, as well as ¢(X) and ¢(H). The research on
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Fig. 2. Training a dictionary by group patches from both the target and
reference images [52].

defining 1)(X) is more common and prosperous. In recent years,
the study of regularization has developed very fast. Almost
all smooth schemes in low-level vision tasks can be used as
regularization in remote sensing image quality improvements.

Regularization schemes are prior knowledge on X: It is an
assumption of data characteristics when solving the equation.
The most common regularization is Lo norm regularization. Due
to the popularity of variational image processing and CS, the reg-
ularization of L, norm also plays an important role in the field.
Except for Ly and L, regularization, many advanced methods
for low-level vision tasks are also used as regularization. For
example, as in summary of [52], the TV or partial-differential
equation method [53] makes use of the geometric features of the
image, the wavelet method makes use of the statistical features of
the wavelet coefficients [54], the MRF method makes use of the
relationship of neighborhood pixels [55], the dictionary learning
method [56] mainly makes use of the sparsity of the representa-
tion coefficients, the nonlocal means method [57] makes use of
the redundancy in the image texture features, and the expected
patch log-likelihood method [58] makes use of the statistical
features of the image patches. There are also excellent methods,
such as block matching and 3-D filtering (BM3D) [59], which
employ both the redundancy in texture and the sparsity in the
transform domain. These different regularizations are based on
different theories and assumptions, and they all exhibit promis-
ing performances. All methods are used for image-denoising
and finally employed for regularization schemes. They are all
assumptions on the characteristics of the data. Of course, the
now popular deep learning can also be seen as a general form of
regularization, and this regularization based on big data shows
more powerful capabilities. For the regularization in image
fusion, it is crucial to measure and correlate the characteristics
of multisource observation data to form complementary infor-
mation gain. As the example in Fig. 2, only by constructing a
regularization term based on complementary information gain,
which provides beneficial information of multiple sources for
solving the original data X, can regularization be used to support
fusion problems.
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Regularization and Law of Geography: We propose that reg-
ularization is the concrete embodiment of “The First Law of
Geography” in the field of remote sensing data reconstruction.
The First Law of Geography, according to Waldo Tobler, is
“everything is related to everything else, but near things are more
related than distant things” [60]. This first law is the foundation
of spatial dependence and spatial autocorrelation and is used
specifically for the inverse distance weighting method for spatial
interpolation and to support the regionalized variable theory
for kriging [61]. The first law of geography is the fundamental
assumption used in all spatial analysis [62]. Very similar, regu-
larization is exactly this kind of assumption of data, but it is for
remote sensing observation data. In the community of machine
learning, the basis or dictionary in sparse representation, the
patches in nonlocal means, or the convolution in deep learning,
are all concrete methods of regularization to find similarities
or relationships in the data by transforming them into a new
space. Furthermore, we need to refer to “the second law of
geography” as well as Law of Spatial Heterogeneity. In practical
applications, the corresponding regularization methods may be
derived from the way of the heterogeneity.

We should note that in CS theory, data properties such as
sparsity are considered together with the sensing matrix, which
is considered to be a very advanced concept in this article. The
idea is promising, and not just limited to CS. Of course, this
also shows the importance of regularization, because we need
the assumption of data characteristics for a good reconstruction.

C. Noise Status (Balance of Power)

The noise status will determine the Balance of Power in the
solution of the object function (2), which is the third fundamental
problem. In the equation for image quality improvement, the
fidelity term mainly provides the power of antidegradation,
while the regularization term mainly provides the power for
equation stability. The most important characteristic of the two
powers is that they are the unity of opposites. First, they are
oppositive because antidegradation will enhance the texture de-
tails of the image but regularization will smooth out a part of the
texture details. Second, they are unitive need each other because
antidegradation can provide input information for regularization
and regularization can suppress large noise in antidegradation
to avoid contaminating the images.

Asin (2), A (A1 and A5) denote the balance between the two
powers of antidegradation and regularization. In most cases, it is
taken as a hyperparameter problem. First, since the ground truth
image is unknown, we cannot directly judge how much noise
and how many texture details there are in the current image. As
a result, it is very hard to set the values of A when solving the
equation. Second, the fidelity term is often a linear form, but
the regularization term can be either a linear or nonlinear form.
If the initial noise in the observation data Y is known and the
regularization term is linear, the values of A can be precisely
estimated. It means that we can set the optimal hyperparameter
in solving the linear equation. However, most of advanced
image quality improvement methods involved highly nonlinear
regularization or even nonlinear fidelity. As a result, the strength
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Examples of coupling noise with synchronization simulation for different advanced nonlinear regularization. For PDF regularization, the synchronization

equation is constructed with gradients. For nonlocal means regularization, the synchronization equation is constructed with the kernel of features. For deep learning
regularization, the synchronization equation is constructed with activation functions. The synchronization equation model present the relationship between noise
state and quality improvement. The noise equation interacts with the data equation and iterates synchronously. The correlation between noise state and quality
improvement process is quantified, the statistical characteristics of residual noise can be accurately estimated, and the two processes of noise removal and quality

improvement can be coordinated.

of the two powers is both anisotropic and dynamic, especially
for nonlinear regularization. This is the fundamental cause of
the difficulty in finding the balance between the two powers.

Coupling noise with synchronization simulation: The regular-
ization parameter maintains the balance between the regulariza-
tion term and the fidelity term. The selection of an appropriate
regularization parameter has been the object of studies in the
field of inverse problems, and some classical methods address
the issue, such as cross-validate, L-curve, discrepancy principle,
and Bayesian estimation etc. However, these classical methods
are hard to directly use in advanced nonlinear regularization. To
correctly estimate the status of the noise remaining in the image,
we believe that coupling noise by synchronization simulation is
promising [63]. As in Fig. 3, it synchronously iterates a synthe-
sized noise with the observed image in the solving procedure.
The similarity in the statistical properties of the real noise and
the synthetic noise can be maintained in iteration. We then
establish the relationship between the statistical characteristics
of synthetic noise and the regularization parameter. In every
iteration, the regularization parameter can be calculated by using
a derivable formula for the relationship.

D. Deep Learning Versus Imaging Model

For the early studies of data reconstruction, an explicit model
with a clear observation model plays more important role.
However, with the development of deep learning and automatic
feature learning, it is possible to weaken the observation model
such as (1). We can find that based on popular deep learning
methods in recent years, it seems possible to reconstruct data
without these three fundamental problems. However, the three
fundamental problems with data reconstruction have not gone
away. The deep learning approach, because it is an implicit
model, actually solves them in a special way all together.
The perception matrix that plays the role of mapping and the
regularization that maintains the stability of the equation have
changed their forms, and they are implemented in the ways of
convolution, connection, activation, pooling, even attention, etc.
The process of fusion can be easily realized in the hidden layers
of CNN or other deep architectures, where the physical meaning
of the observation or data distribution model is dramatically
weakened. We call this kind of trend of fusion as implicit model
and data-driven, which is denoted as in [4].

In a typical method of implicit model and data-driven, we do
not need to consider the observation equation Y = H x X + €.
One of the advantages is that the fusion process can avoid
some problems resulting from the complexity of H, especially
for heterogeneous remote sensing data, etc. However, the ex-
plainability or interpretability of the fusion becomes so weak
that we cannot judge how and why the fusion produces better
performances in some cases. Furthermore, data-driven methods
often show overfitting in some cases. Another problem is that
data-driven reconstruction usually needs more training data and
more computation sources. We believe that both model-driven
and data-driven methods have their advanced merits. Explicit
reconstruction with observational models is still very valuable,
especially in fusion reconstruction scenarios that require clear
physical meaning. There are already studies that try to com-
bine the two schemes in fusion. This article will also develop
this bidirectional-driven approach, based on semiblind CS, to
achieve spatiotemporal fusion.

V. COMPRESSED SENSING

In this section, we address the model of CS, which is a special
case in observation model and data reconstruction and will be
used in the following process of spatiotemporal data fusion.
CS [33] is an efficient way to acquire and reconstruct a signal
from a series of sample measurements. For an original remote
sensing signal X € R4, similar to (1), the observation Y € RB
can be represented as

Y =3X +e A3)

where ® is the measurement matrix mapping from R4 to R”,
B is typically much smaller than A, and € is the noise. Matrix ®
represents a dimensionality reduction. Many studies have been
made for restoring X from Y. For signal X, such as remote
sensing image, it is usually sparse in some domains and can be
represented by the basis D:

X = D« 4

where « are the coefficients of X with the basis D, and D is
an atom set which is also denoted as a dictionary. With above
definitions in (3) and (4), observation Y is expressed as

Y = ®Da +e. (5)
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(HSLT)
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HSLT image at time t; (X;) HSLT image at time t; (Y2)

High-Temporal-Low-Spatial (HTLS)

HTLS image at time t; (Y;) HTLS image at time t, (Y;)

Fig. 4. Problem definition. The HSLT images and HTLS images are at time
t1 and to. The unknown image at time t2 needs to be estimated.

Finally, the objective function of a CS problem is

min |a|, , subjecttoY = ®Da. (6)

The minimization of £y-norm in (6) can be converted to ¢;-
norm problem when restricted isometry property (RIP) [64],
[65], [66] (for @ and D) is satisfied. By this way, the converted
problem of ¢;-norm is solvable in polynomial time. Imposing
l5-norm on the data-fitting term, and applying a Lagrangian
form, (6) becomes

min |, + A [|Y — ®Dalf;. (7)

In the next section, CS model is applied to spatiotemporal data
fusion and used to present the resolution relationship between
multisource images.

VI. SPATIOTEMPORAL DATA FUSION
A. Problem Definition of Spatiotemporal Data Fusion

In this article, the known and unknown variables in the STR-
SIF are shown in Fig. 4. For the task of STRSIF, all images
need to be accurately matched in a unique geographic location.
Both HTLS and HSLT images are calibrated to the same physical
quantity. The images involved in STRSIF are: one pair of images
with HSLT image X; and HTLS image Y;; and one pair of
images with HSLT image X and HTLS image Y5. The unknown
HTHS image X5 is the target that needs to be estimated. For
convenient, the symbol definitions used in this article are listed
in Table I.

In this part, we design a two-stage deep-CS model for spa-
tiotemporal image fusion. At the first stage, the observation
model of (3) is taken as forward model, and the observation
matrix is only partly known. At the second stage, the deep
networks as postprocessing of CS are added into our fusion.
This postprocessing not only smooths out the noise and artifact
in the initial estimation but also compensates for the errors from
the unprecise downsampling matrix M. Many studies [67], [68]
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TABLE I
SYMBOL TABLE
Symbol Definition
X, Yi Original HTLS image and HSLT image at time k,
o k=1,2.
X, Yy Arbitrary the ¢th HTLS image or HSLT image at
_ _ time k. )

X, Y Patch set for the HSLT image X, and HTLS image
Vi and X, = {1"9 1, and Yy, = {n"9} L,
where ;S’@ and US’C) are subclass patches.

X,V Y is the matrix for [\/n1Y1,/N2Y2]T, and X is
[V X1, 2 Xa]T.

P Sampling matrix in a standard compressed sensing.

D Over complete dictionary trained from the corre-
sponding Xj. We assume that D1 =~ Da.

« Sparse coefficients obtained by decomposing image
data with the dictionary D.

M;, Sampling matrix between HTLS image Y} and
HSLT image Xj.

F() Deep CNN sturcture of second stage estimates

gm () MAF in F(-)

[69], [70] categorized this method into deep CS. We can also
call it bidirectional-driven method as it includes in both forward
model-driven and backward data-driven.

B. Spatiotemporal Data Fusion With CS

For the problem of spatiotemporal data fusion, we use the
CS to represent the relationship of images with different spatial-
resolutions. As in Fig. 4, our goal is to predict an image of with
high spatial resolution of Landsat ETM+ at time k with one pairs
of Landsat ETM+ and MODIS images (acquired at k — 1) and
one MODIS image (acquired at k). For arbitrary time k, there is

Y. = M. Xy + e ¢))

where the MODIS image Y} is defined as the observation
downsampled from X}, and M}, (same as ®j) represents the
downampling operation. They are similar to the observation
equation of CS. If «y is sparse enough (X = Dyay) and the
sensing matrix My Dy, satisfy RIP condition, oy, (as well as X))
can be solved uniquely in polynomial time.

It seems like a solvable problem since it is not difficult to find
Dy, that can sparsely represent spatiotemporal data. However,
in spatiotemporal data fusion, there are at least three issues that
we need to give special considerations. First, spatiotemporal
data fusion is based on two temporal sequences, so in the
reconstruction we can make use both the sparse characteristics
and the spatiotemporal correlation characteristics. Second, the
measurement matrix M is unknown, which makes the it far
more difficult than common CS problem. Third, due to the sit-
uation that images are acquired by different sensors in different
conditions (such as time, spectrum, resolution, etc.), it is often
difficult to ensure RIP. Therefore, extra constraints should be
introduced into the fusion model based on (7), which will help
us find its solution. Since they are two temporal sequences, we
can assume that X5 is not far from X;. Then for time k = 2,
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there is

Lo(D,a) = 7| X1 — Dal|% + As||Ys — MyDa||% + |al;
)

where Do = X5, and Ay and X, are the parameters. We need
to notice that we do not use D; and Dy but only D. In time
sequence images, we can assume that D ~ D,, and they are
both sparse enough to represent our target image Xs.

More important, in (9), there are two ways that provide
information to our target X5: one is the observation model of
downsampling, the other is its similarity to the neighborhood
image X;. Obviously, it will be more suitable to find a X5 in (9)
than in a single CS model of (7). However, it is still not enough to
reconstruct a fusion image X», because the measurement matrix
M5 is unknown and it is difficult to ensure RIP condition for CS.

Without a determined measurement matrix Mo, it will lead to
ablind CS problem. Since we can know some information about
M5 by neighborhood images, it is a semiblind CS problem. In
next section, we will discuss how to estimate a sampling matrix
Ms.

C. Design Sampling Matrix for Spatiotemporal Data Fusion

One of the key points for CS reconstruction is the relationship
between the sampling matrix (measurement matrix) and dictio-
nary, which belongs to the first fundamental problem mentioned
above. To meet this requirement, commonly used measurement
matrices include Gaussian matrices, Bernoulli matrices, partial
Fourier matrices, partial random Toeplitz or circulant matrix, and
partial Hadamard matrix, etc. The coherence of a matrix falling
within the lower and upper bounds helps us to reconstruct the
image effectively.

However, in spatiotemporal fusion, we have not totally deter-
mined sampling matrix. It is semiblind CS since there is only
a partly known sampling matrix. STRSIF with semiblind CS
puts new requirements on constructing sampling matrix. On
the one hand, the sampling matrix should reflect the projection
relationship of different resolution in remote sensing images,
rather than a completely random matrix. On the other hand,
the sampling matrix needs to be incoherent with the sparse
transformation matrix (dictionary) as far as possible to meet
RIP condition.

Asin (5) and (9), when « is sufficiently sparse, it is necessary
to ensure that Ms and D are incoherent. Obviously, matrix M,
will be incoherent with D when it satisfies high randomness.
However, the high randomness of M, in STRSIF is not practical.
The reason is that M5 represents a downsampling process from
high spatial resolution to low spatial resolution, so it means
that M5 must be able to describe both the feature structure and
sampling relationship of spatiotemporal images. Therefore, M,
should not be a completely random matrix. In this article, we for
first time proposed that the fusion problem needs to establish
a semirandom observation matrix that satisfies both the spatial
correspondence and the random property.

The semirandom observation matrix must exist, but it is not
easy to find accurately. We can design the sampling matrix based
on more relaxed conditions. Let us review the RIP condition.
Let > be the union of all subspaces spanned by all subsets of
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k columns of M,. The matrix M, D has the restricted isometry
property (RIP) adapt M, with dy referring to [64], [65], [66] if

(1= dwllal3 < [IMaDall3 < (1+ di)llafl3. (10)

We can understand formula (10) as: My D will be better if
this product matrix is almost orthogonal. In addition, since
the time sequences are similar in image features, we have
reason to assume M; =~ Ms =~ M. When considering both the
downsampling relationship between spatiotemporal data and
the fundamental RIP condition in CS, we construct a new object
function for measurement matrix as

Ly (M) =m Yy — MX4[%

+mo||Ya = MXo|% + T - MDDTMT|3  (11)

where I is a unit matrix. Term |[|[I — M DDTM7”||% means
MD(DM)T is very close to unit matrix I, as well as M D is
a orthogonal matrix. We actually implement the RIP of (10) by
constraints of [T — M DDT MT||%. Since D is known, M is not
necessary to be very high random but incoherence to a known D.

For an existing D, to find the solution of M, the object
Ly (M) is rewritten as

Ly (M)

Vi2Ya
For the simplicity, it is changed as
Lyr(M) = ||V = MX|| + |1 - MDDT M™%

2
+|T - MDDTMT%.
F

- M VinXi
V2 X2

(12)

13)

where ) is the matrix for [\/m1Y7,/N2Y2]?, and X is
[/ X1, /2X2]". We take the derivative of the object function
with respect to M and get

OL . o O|I—MDDTMT|3
o yxT - Mxx =
o~ 2V )+ EXYi 0
(14)
where
OMDDT MT
= —(DDT+DTD)MT”. 15
M ( + ) (15)
The derivative of the second term is
O — MDDT M™%,
OM
= X+1"YMDD" + aMDD" MT"MDD™. (16)

Bring (16) into (14), we have
20X —MxXxT)+2MDDT +4M DD MTMDDT = 0.

(17)
Since MDDTMT ~ 1, there is
2XT — MxxT)+2MDDT + 4aMDDT =0. (18)
Rearrange it as
Mxx? —-3DpDT) = ya’. (19)
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The estimated sampling matrix is

M =yxT(xx? —-3pD") 1. (20)

It is worth to notice that X5 in X is not really known, so the
sampling matrix M will be updated with each new X in the
iteration.

In the CS stage of spatiotemporal data fusion, we need to first
find a dictionary D, and then use (11) and (20) to find a sampling
matrix M, and finally predict the target image X2 by (9). The
dictionary D is relative easy to train. In practice, (9) and (11)
can also be alternatively solved as (21) shown at the bottom of
this page.

When both D and M are solved, we finish the first stage of
deep CS model. However, the semiblind CS reconstruction with
a partly known M and over large resolution gap is still prone to
instability only by regularization of /; norm as in (9). We need
to introduce more information by deep features of images into
the fusion process.

D. Add Deep Network as Postprocessing into Fusion

As mentioned above, a single CS reconstruction only by the
first stage is hard to provide a precise and stable fusion for the
target image. The constraint items of sparsity for representing
the HTHS image can effectively maintain the fusion result to
a certain extent. However, a single sparse regularization is not
enough. This belongs to the second fundamental problem in
Section IV. Due to the large difference in resolution between
HTLS image and HSLT image and unprecise sampling matrix
M , the fusion results will be degraded, especially for small detail
features and changing areas.

In this case, we implement the second stage reconstruction
by deep learning, which is also a special case of deep CS as
pointed in [71]. The estimation in the second stage is defined as:
Xy = ]-'()Q, Ya2, X5 : 0), where F(-) which is a deep network
architecture, 6 are parameters in the network, and the reference
image such as X7 and Y5 and initial estimates X2 (from CS)
are inputs. Combining with object function L, (D, «), it is kind
of deep CS by the taxonomy of [71]. It means that we need
samples of true X in the training stage, which are from other
time sequences, and its loss function can be denoted as

Loss(X3) = || F(Xa, Y2, X1 : 0) — X3 (22)
where X. 5 = Dd& and X. 5 1s the initial estimation from CS, and
X, is the ground truth image in training pairs. In this article, in
addition to Ly loss in (22), we also use L1 norm and structure
similarity loss at the same time.

Now we have a deep CS with the second stage in the fusion
process as in Fig. 5. The deep CS with two stages belongs
to both model-driven and data-driven. The information from
CS observation is model-driven, but the information from deep
learning F (Xg,Yg,Xl : 0) is data-driven. CS reconstruction
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with sampling matrix M is explicit but F (X 2, Y3, X1 : 6)recon-
struction is implicit. They all have their advantages. CS model-
driven is explainable and easy to known which features can be
reconstructed. Deep feature with data-driven can utilize more
information from external data and improve the performance
of fusion. We can also call this method as bidirectional-driven
model.

Specifically, as in Fig. 6, we design a parallel CNN structure
for second stage F (X' 2, Y2, X1 : 0), where the target image X,
and the reference image X; and Y5 are all transformed into the
similar feature space by the convolutional layers. Since we have
a CSinitial estimates, in the second stage, the fusion reconstruc-
tion does not adopt regular branch aggregation structure as many
existing research. We proposed to integrate the information in
a new way: features from different branches enter into a new
MAF to fuse the reconstruction of X5.

Before presenting the proposed MAF, we first review the
active process of feature layers in conventional CNN. The well-
known ReL U activation function [72] is defined as

x x>0

J@) = {0 z <0

where x is the feature value in the arbitrary index from the
convolutional layers.

ReLU in (23) or Leaky-ReLU [73] as the activation function
are commonly used in many networks as they are simply opera-
tion and improve the sparseness of the network. For information
confluence from multiple branches, the judgments by a con-
ventional activation function are not always correct. Especially
when there are many errors from CS reconstruction, it is hard to
decide how many details should be removed or reserved.

We believe that the priors from neighborhood data (Y5 or X)
can be introduced in deep reconstruction by a more direct way. In
this article, we propose a parallel deep CNN structure (PD-CNN)
with a MAF for the fusion in the second stage. The PD-CNN is
constructed with three similar deep CNNs as in Fig. 6. The inputs
are image Xg, X1, and Y5, and the output is Xg. All the three
branches have the same convolutional layers. To reduce system
errors, X o and X7 are styled to Y5 by AdaIN [74] function before
entering into MAF. We can think that PD-CNN transforms all
input image into the similar feature space. We need to compare
the feature values of the three images, and determine which are
the important image features and the error of CS reconstruction.
Therefore, We consider using the information of the reference
image to assist the activation of the features of target image. A
new activation function g,, is defined as

(23)

Ta2 + Tes La2 Z O7xa1 Z 0
Ta2 I+ Tes Taz > 0,241 <0

T xr X =
gm( csyLals a27y2) T2 l T2 < Oyl'al 2 0
xa2'l+y2 xa2<07xa1<0

(24)

Lo(D,a) = 1| X1 — Dal|f + 22||Ya — M Dal|7 + |a|y
Ly (M) = ml|[Yy — MX1||% + 2| Yo — MX5||% + [T = MDD MT|3.

21
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Fig. 5.

Reconstruction A

La(D,a) = M| Xy = Da3+A2||Ya — MaDa||}:+]aly  Loss(X2) = | F(Xa, Ya. Xy : 0) — Xa2

Initial Estimate Final Result

Lo

1% Second Reconstruction
L8l

A% ’;.:l Deep Architecture with Multivariate i
Activation Function (MAF)

SDCS reconstruction with two stages. At the first stage, we design a sampling matrix and provide an initial estimation; at the second stage, we construct

deep architecture to make the final estimation by compensating for the spectral and spatial features.

#0|gsoy

Fig. 6. Second stage reconstruction by PD-CNN architecture. g, (+) is the
MAF. ResBlock is the block of residual networks. AdalN is the adaptive instance
normalization.

where [ is a leak parameter that represents the slope, y» represent
the feature values from Y5, respectively, z,1 is the feature values
of X out from AdalN function, and z, is the feature values of
X 5 out from Adaln function. x5 is with the similar definition as
241 . For the proposed PD-CNN, there are two types of activation
functions. The conventional ReLLU activation function as in (23)
is used in the network of ResBlock. The proposed activation
function of g,, in (24) is used in the interval between different
ResBlocks.

In the proposed activation function g, (Zcs,Ta1,Ta2,Y2),
there are four inputs and four cases, which provide more in-
formation for activation. For the first case, when x,5 > 0 and
Tq,1 > 0, it means the features from ¢, and ¢, are both remark-
able, and then features directly from CS initial reconstruction
and their styled feature all need to be reserved. For the second
case, when z,9 > 0 and z,; < 0, features directly from CS
initial reconstruction should be multiplied by leak parameter.
For the third case, when x,5 < 0 and z,; > 0, it means that
features are changed in time dimension, and the initial estimate
Z s 18 eliminated and only the styled feature is reserved. For the
fourth case, when x,o < 0 and z,; < 0, the features from ¢,

and ¢ are both negative so that in addition to multiplying leak
parameter we use yo to compensate for the activation. Overall,
MAF g, is piecewise function, so that it is more suitable for
the task of information fusion in the multibranch networks for
postprocessing.

Now, we have designed PD-CNN with MAF for the second
stage of deep CS reconstruction ()N( 2). The combination of two
stage reconstruction is with both model-driven and data-driven
reconstruction. The complete semiblind CS fusion model is
shown in Fig. 5.

E. Data Preprocessing and Complete Fusion Model

1) Data Preprocessing: Data preprocessing is a necessary
way to enhance the sparsity of data and to find a reasonable
local M for semiblind CS. Especially for the first stage, it is
unrealistic to use a single sampling matrix M to represent all
feature relationships between HTLS images and HSLT images,
because Landsat and MODIS data inevitably suffer from system
errors, interferences in imaging and abrupt changes in land
cover, etc. In this article, to ensure the stability and robust in
semiblind CS reconstruction, we use group sparse representation
in dictionary learning and group CS in matrix M training.

Similar to [75], for an arbitrary sth HTLS image and HSLT
image at time k are segmented into patch set X} and Y. To
balance feature diversity and sparsity, each patch dataset Xi,
is clustered into C' classes according to the Euclidean distance,
as well as X, = {"?}C_|. For the HTLS image, we have a
similar patch set Yi = {n{"”}C | However, each cluster in
Y? is created by allocating each patch to its nearest cluster
center corresponding in X} . For each subclass, we search for

a corresponding dictionary D,(f’c)

. The sampling matrix M ,gi’c)
is trained using the cluster pair (pfj’c), U,(CZ’C)>. More detailed
description on patch groups refers to [75]. In this way, the
localization dictionary more sparsely represents the data and the
localization sampling matrix is adaptive, so that the condition

of reconstruction for CS is more easily satisfied.
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After preprocessing, for the arbitrary ith pair subclass
(x,(;’c), t),(c“c)) in image {X!,Y}'}, the training and prediction
are all similar. Therefore, for convenient, we eliminate the index
(i,c) and only use { X}, Y} }7_, as a group in derivation formula
of performing fusion.

2) Complete Fusion Model: Now we summarize the com-
plete fusion model. As illustrated in Fig. 5, it includes two
stages: the CS initial estimation and the postreconstruction by
deep learning.

At the first stage, an initial estimation is obtained by CS
reconstruction. There are three unknown variables D, «, and
M in CS reconstruction. Dictionary D can be found by solving
(9) by group sparse representation. Each patch group has an in-
dividually trained dictionary D and individual sampling matrix
M. Sampling matrix M is a solution of (20). M is only partly
known and disturbed by condition of image acquisition. The
solution of (20) will make sure that both the RIP condition of CS
and the correspondence of spatiotemporal features are satisfied
at the same time. Matrix M is also adaptive and correspond
to local D. Therefore, the local downsampling matrix within
a group is easier to be estimated and the intrinsic mapping
relationship of spatiotemporal data is better established. At
the end of the first stage, we have a new training dataset as
{{Xi, X5}, X5, {Y], Y43} |, where X3 is the initial estima-
tion by CS.

At the second stage, after the initial fusion Xé is already
generated, we need to use the PD-CNN structure with MAF to
reconstruct the image based on the initial estimates X 1. PD-CNN
structure has three branch, and it is added as a postprocessing of
the fusion after CS reconstruction. The new dataset are organized
as Fig. 6 and input into of PD-CNN for deep reconstruction. One
of key problem is to decide what features should be activated
and what information should be introduced into the final fusion
image. The newly designed MAF function can help to utilize the
reference information of neighborhood spatiotemporal image.
The other key problem is to reduce system errors in this stage, so
that we use AdaIN block for the two branches. The second stage
not only smoothes out the noise but also reduces the errors from
unprecise sampling matrix and compensates for the influences
by different imaging conditions.

Now, we summarized the training steps of SDCS as Algo-
rithm 1. The predicting steps is similar to Algorithm 1 but only
performs prediction in the second stage.

VII. EXPERIMENTS AND RESULTS
A. Study Areas and Data Sets

In the experiment, four open source datasets for the ColeamB-
bally Irrigation Area (CIA),' the Gwydir Downstream Catch-
ment Area (LGC),? the Ar Horqin Banner (AHB) and Tianjin *
were used to test the proposed model.

CIA is an image dataset of Australia’s summer crop growing
areas. It is 43 km high in the north—south direction and 51

Uhttps://dx.doi.org/10.4225/08/5111ACOBF1229CIA
Zhttps://dx.doi.org/10.4225/08/5111 AD2B7FEE6LGC
3https://doi.org/10.1007/511432-019-2785-y
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Algorithm 1: Training for STRSIF with SDCS.
Input: Training dataset S;, = {{X}, X3}, {Y{, Y3}V,
The First Stage:
1: Preprocess training data .S;,: generate patches and
construct patch group as Section VI-E1
2: Training the dictionary D by (9)
3: Construct the sampling matrix M by (20)
4: Make an initial estimate with (9) and get X}
The Second Stage:
1: Construct new training data

Str = {{va X%}a Xé7 {Ylia }/;}}7{\;1

2: Use training data Sy 0 training the second-stage
network PD-CNN in Fig. 6.
Output: D, M, and PD-CNN

km wide in the east-west direction. The dataset consists
of Landsat-7 ETM+ and MODIS image pairs to form the
MODTRAN4 product. The image size of Landsat-7 ETM+
is 720 x 2040. For each pair of images, the MODIS image
is interpolated to the same size as the Landsat-7 image. In
both CIA and LGC, the band number of Landsat-7 ETM+ and
MODIS images is 6. There are 17 pairs of cloud-free images in
the CIA dataset. In CIA as in Fig. 7, image phenology changes
significantly with the change of time.

LGC is about drainage areas in northern New South Wales.
It is 80 km high from north to south and 68 km wide from
east to west. The image pairs are Landsat-5 TM image and
MODIS MODO09GA product image. Landsat-5 TM satellite
image size is 3200 x 2720. Again, MODIS data are upsampled
to the same size as Landsat images. There are 14 pairs of
images in the LGC dataset. The scenarios provided by LGC
are mainly watershed areas. With the change of time, the land
cover changes significantly.

AHB, located in Ar Horqin Banner of Inner Mongolia
province, China, is a dataset that spans 51 km in the north—south
direction and 48 km in the east-west direction. The dataset
comprises Landsat-8 OLI and MODIS image pairs to form the
AHB dataset. The image size of Landsat-8 OLI is 2480 x 2800
with six bands. For each pair, the MODIS image is resampled
to match the spatial resolution of the Landsat-8 image. The
AHB dataset features 27 pairs of cloud-free images, capturing
significant phenological changes in rural areas over time.

Tianjin is in the northern municipality of China, which covers
an area of 68 km in the north—south direction and 66 km in the
east—west direction. This dataset is composed of Landsat-8 OLI
and MODIS MODO02HKM image pairs, known as the Tianjin
dataset. The Landsat-8 OLI images measure 2100 x 1970 with
six spectral bands. Similar to the AHB dataset, the MODIS
images are interpolated to the pixel dimensions of the Landsat-8
images. The Tianjin dataset includes 27 pairs of cloud-free
images, illustrating substantial phenological changes in urban
areas throughout the different seasons.


https://dx.doi.org/10.4225/08/5111AC0BF1229CIA
https://dx.doi.org/10.4225/08/5111AD2B7FEE6LGC
https://doi.org/10.1007/s11432-019-2785-y
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Fig. 7.

Examples from CIA (a), (b),(e),(f) and LGC (c), (d), (g), (h) dataset, from which we can observe that there are significant phenological changes. (a) CIA,

t1 = 2002108. (b) CIA, to = 2002117. (c) LGC, t; = 20050302. (d) LGC, t2 = 20050403. (e) CIA, t; = 2002108. (f) CIA, to = 2002117. (g) LGC, t; =

20050302. (h) LGC, t2 = 20050403.

To illustrate the effectiveness of the experiment, experiment
setting, quantitative comparison, qualitative comparison, and
ablation are introduced in following sections.

B. Experiment Setting

To validate the proposed STRSIF method of semiblind deep
compressive sensing (SDCS), we compared SDCS with seven
state-of-the-art algorithms (MLFF-GAN [7], FSDAF [23], ED-
CSTFN [42], GAN-STEM [46], ECPW-STEN [50], SRSF-
GAN [76], and STFDiff [77]) to prove its effectiveness. Both
quantitative and qualitative comparisons are carried out com-
prehensively. We also show the function of different parts in
SDCS by ablating different parts of its two stages of deep CS.

In the experimental setup, all datasets are partitioned into
training and testing subsets. In the CIA dataset, the training
subset consists of 11 groups, each containing the first ten pairs of
images in chronological order, while the testing subset includes
the next five groups in time sequence. Each group contains two
pairs of images that are adjacent in time. Similarly, in the LGC
dataset, the training subset consists of nine groups, while the
testing subset includes the remaining four groups. Similarly, the
first 20 groups of pairs of images from the AHB and Tianjin
datasets will be employed for training, while five groups will
be selected for testing. In the training phase, image pairs from
the later period are allowed to be used as known images, while
low-resolution images from the previous period are allowed to
be used as MODIS images of input at prediction time.

To evaluate the fusion results, we compare the results to the
ground truth. Several evaluation indicators are used to evaluate
the experimental data. They are the root mean square error
(RMSE), the mean absolute loss (MAE), the structural similarity
(SSIM), and the spectral angle mapper (SAM). Among them,
RMSE, and SSIM mainly depends on spatial details, but SAM
mainly reflect on spectral loss.

C. Quantitative Comparison

For quantitative comparison, eight algorithms SDCS, STFD-
iff [77], ECPW-STFEN [50], SRSF-GAN [76], MLFF-GAN [7],
GAN-STFM [46], EDCSTEN [42] and FSDAF [23] participated
in the experiments. STFDiff [77], ECPW-STEN [50], SRSF-
GAN [76], EDCSTEN [42], GAN-STFM [46], and MLFF-
GAN [7] are deep-learning based methods. EDCSTFN [42]
solely utilizes the architecture of a convolutional neural
network. GAN-STFM [46] and MLFF-GAN [7] mainly adopt
the architecture of generative adversarial networks. For FSDAF,
EDCSTEN, STEDiff [77], ECPW-STEN [50], SRSF-GAN [76],
and MLFF-GAN [7], the input data include a low-resolution
image at the prediction time and a pair of recent low- and
high-resolution images. In contrast, for GAN-STFM [46], the
input data include a low-resolution image at the prediction time
and a recent high-resolution image. FSDAF [23] is a popular
nondeep learning method based on weight and unmixing, which
exhibits good performances. In addition, we noticed that the
GAN-STFM [46] algorithm only requires two input images.

Table II shows the quantitative index evaluation of the
eight algorithms on CIA, LGC, AHB, and Tianjin datasets,
respectively.

For CIA dataset, in most cases, the proposed SDCS shows
better performances. However, deep learning algorithm MLFF-
GAN [7] also show some good performances, and in some cases
its quantitative index overpasses some of other methods. This
may be attributed to its multilevel feature fusion strategy. For
LGC dataset, in most cases, the proposed SDCS shows better
performances than others. Surprisingly, conventional algorithm
FSDAF [23] performs well on the SAM metric, achieving the
highest mean rank, which indicates that FSDAF [23] effectively
preserves spectral information. SDCS ranks second in terms of
mean SAM, closely trailing FSDAF [23], further demonstrating
the robustness of the proposed method in mitigating spectral dis-
tortion. For FSDAF [23], we speculate that the pixels in the LGC
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TABLE II
RESULTS OF CONTRAST EXPERIMENTS ON CIA, LGC, AHB AND TIANJIN DATASETS

04-01 04-10 04-17 04-26 Mean
Model
oo RMSE SAM SSIM MAE RMSE SAM SSIM MAE RMSE SAM SSIM MAE RMSE SAM SSIM MAE RMSE SAM SSIM MAE
SDCS 0.0186  0.0719  0.9093 0.0162 0.0163  0.0681 0.9120 0.0139  0.0166 0.0704 0.9024 0.0141 0.0165 0.0632 0.9015 0.0139  0.0170  0.0684 0.9063  0.0145
5 MLFF-GAN 0.0201  0.0702 0.9018 0.0176  0.0196 0.0720 0.8879  0.0169  0.0213  0.0796 0.8476 0.0181 0.0210 0.0694 0.8562 0.0178 0.0205 0.0728 0.8734  0.0176
STEDiff 0.0218 0.0788 0.8969 0.0192 0.0229 0.0766 0.8873  0.0201 0.0216 0.0813 0.8485 0.0182 0.0205 0.0702 0.8593 0.0172 0.0217 0.0767 0.8730 0.0187
SRSF-GAN 0.0213  0.0781 0.9049 0.0188 0.0201 0.0759 0.8944 0.0174 0.0218 0.0805 0.8483 0.0186 0.0213 0.0631 0.8647 0.0181 0.0211  0.0744 0.8781 0.0182
ECPW-STEN  0.0318 0.1569  0.7474  0.0293 0.0375  0.1505 0.7286  0.0351 0.0329  0.1412  0.7007 0.0298 0.0281 0.1381 0.7133 0.0250  0.0326  0.1467  0.7225 0.0298
EDCSTEN 0.0244  0.0906 0.8917 0.0218 0.0274 0.0946 0.8729  0.0248  0.0290  0.1063  0.8280  0.0259 0.0234 0.0764 0.8519  0.0202  0.0261  0.0920 0.8611  0.0232
GAN-STFM 0.0254 0.0988  0.8758  0.0225 0.0252  0.0940 0.8673 0.0221 0.0265 0.1014  0.8290  0.0231 0.0247  0.0909 0.8361 0.0211 0.0254  0.0963 0.8520  0.0222
FSDAF 0.0225 0.0811 0.8859 0.0196 0.0241 0.0743 0.8634 0.0209 0.0226  0.0869 0.8282 0.0187 0.0216 0.0715 0.8382 0.0179 0.0227 0.0784 0.8539 0.0193
01-29 02-24 03-02 04-03 Mean
Model
oce RMSE SAM SSIM MAE RMSE SAM SSIM MAE RMSE SAM SSIM MAE RMSE SAM SSIM MAE RMSE SAM SSIM MAE
SDCS 0.0190  0.0765 09114  0.0166 0.0159  0.0609 09368 0.0139 0.0142 0.0556 0.9499 0.0125 0.0154 0.0548 0.9431 0.0136 0.0161 0.0619 0.9353  0.0142
8 MLFF-GAN 0.0198 0.0762 0.8993 0.0172 0.0161 0.0636 09280 0.0140 0.0147 0.0580 0.9421 0.0129 0.0162 0.0548 0.9380 0.0143 0.0167 0.0632 0.9268 0.0146
- STFDiff 0.0235  0.0858 0.8939 0.0212 0.0160 0.0629 0.9332 0.0140 0.0161 0.0587 0.9454 0.0144 0.0173 0.0542 09382 0.0155 0.0182 0.0654 09277 0.0163
SRSF-GAN 0.0217  0.0822 0.9058 0.0193 0.0178 0.0735 0.9268 0.0158 0.0179 0.0628 09390 0.0162 0.0167 0.0564 0.9402 0.0150 0.0185 0.0687 0.9280 0.0165
ECPW-STEN ~ 0.0411  0.1889  0.7346  0.0390  0.0411  0.1992  0.7498 0.0395 0.0434 0.1925 0.7609 0.0421  0.0437 0.2046  0.7539  0.0422  0.0423  0.1963  0.7498  0.0407
EDCSTEN 0.0313 0.1102  0.8818  0.0289  0.0306  0.1108  0.8985 0.0287 0.0317  0.0972  0.9082  0.0301 0.0316  0.1095 0.9008 0.0297 0.0313  0.1070  0.8973 0.0294
GAN-STFM 0.0299  0.1206 0.8662 0.0272  0.0308 0.1231  0.8783  0.0286  0.0263  0.0983  0.9073  0.0242  0.0253  0.0975 0.9051 0.0232  0.0281  0.1099  0.8892  0.0258
FSDAF 0.0215 0.0740  0.8885 0.0186  0.0184 0.0614 09120 0.0159 0.0144 0.0498 0.9367 0.0123  0.0167 0.0579  0.9257 0.0145 0.0177  0.0608 0.9157 0.0153
05-12 10-03 10-19 12-06 Mean
Model
o RMSE SAM SSIM MAE RMSE SAM SSIM MAE RMSE SAM SSIM MAE RMSE SAM SSIM MAE RMSE SAM SSIM MAE
SDCS 0.0264  0.0945 0.8740  0.0240  0.0293 0.1129  0.8510  0.0266 0.0178 0.0884 0.9048 0.0157 0.0325 0.1955 0.9071 0.0317 0.0265 0.1228  0.8842  0.0245
% MLFF-GAN 0.0381 0.1322  0.8551 0.0359  0.0592  0.0923 0.8027 0.0569 0.0206 0.0674 0.9162 0.0190 0.0313 02212  0.8918 0.0305 0.0373  0.1283 0.8664  0.0356
< STFDiff 0.0446  0.1073  0.8605 0.0425 0.0491 0.1332  0.8091 0.0466 0.0339  0.1331 0.8767 0.0323  0.0211 0.1941 09137 0.0204 0.0372 0.1419 0.8650  0.0355
SRSF-GAN 0.0419 0.0745  0.8557  0.0398 0.0485  0.1016 0.8228  0.0462 0.0215  0.0889  0.9157 0.0198 0.0377 02158 0.8942  0.0372 0.0374  0.1202 0.8721 0.0358
ECPW-STEN ~ 0.0479  0.1719  0.8540 0.0461 0.0402 0.2444 0.7673  0.0378 0.0299 0.0879 0.8789 0.0285 0.0520 0.2257 0.8716 0.0516 0.0425 0.1825 0.8430 0.0410
EDCSTEN 0.0461  0.1336  0.8506  0.0440  0.0355 0.2212 0.7950  0.0328  0.0205 0.0929 0.9026 0.0185 0.0509 0.2134 0.8659 0.0504 0.0382  0.1653 0.8535 0.0364
GAN-STFM 0.0435 0.1544  0.8394  0.0413 0.0481 0.1190  0.8136  0.0457 0.0210  0.1155 0.8938 0.0191 0.0366  0.1988  0.8931 0.0358 0.0373  0.1469  0.8600  0.0354
FSDAF 0.0575  0.0982 0.8129 0.0558 0.0510 0.2546 0.7456  0.0483  0.0550 02115 0.7613  0.0537 0.0546 0.2207 0.8387  0.0537  0.0545 0.1963  0.7896  0.0529
18-10-1 18-12-4 19-1-21 19-5-29 Mean
Model
o RMSE SAM SSIM MAE RMSE SAM SSIM MAE RMSE SAM SSIM MAE RMSE SAM SSIM MAE RMSE SAM SSIM MAE
= SDCS 0.0363  0.1656  0.7259  0.0309 0.0333 0.1003 0.7870  0.0281 0.0367 0.1029 0.8041  0.0311 0.0416  0.1367 0.7077  0.0346 0.0370  0.1264 0.7562  0.0312
§ MLFF-GAN 0.0417  0.1973  0.6763  0.0363  0.0393  0.1284 0.7413  0.0341  0.0340  0.0963 0.8010 0.0283 0.0423 0.1367 0.6858 0.0351  0.0393  0.1397 0.7261  0.0334
3] STFDiff 0.0372 0.1832  0.7230  0.0313 0.0361 0.1248  0.7682  0.0304  0.0340  0.0963  0.8279  0.0284  0.0471 0.1615 0.6800  0.0395 0.0386  0.1414  0.7498 0.0324
SRSF-GAN 0.0362 0.1735 0.7255 0.0309 0.0339 0.1128 0.7802  0.0286  0.0361 ~ 0.1063 ~ 0.8008 0.0304 0.0475 0.1688 0.6790  0.0403  0.0384  0.1404  0.7464  0.0325
ECPW-STFN 0.0694 03293  0.6628  0.0641 0.0424  0.1713  0.7519  0.0368 0.0480  0.1777  0.7935 0.0427 0.0814 03570  0.6304 0.0740 0.0603 0.2588  0.7097 0.0544
EDCSTEN 0.0719 02875 0.6306 0.0665 0.0426  0.1592  0.7329  0.0365 0.0489  0.1653  0.7530 0.0425 0.0903  0.3710 0.5897  0.0827  0.0634  0.2458 0.6766  0.0570
GAN-STFM 0.0578 02511  0.6102 0.0512 0.0469 0.1847 0.6883  0.0406 0.0462 0.1485 0.7123  0.0389  0.0671  0.2567 0.5818 0.0586 0.0545 02102 0.6481  0.0473
FSDAF 0.0393  0.1956 0.6871 0.0332 0.0381 0.1293 0.7423  0.0324 0.0358 0.1222  0.7957 0.0301  0.0641 02707 0.5087 0.0563 0.0443 0.1795 0.6835 0.0380
Bold indicates the best, underlining indicates the second-best.
TABLE 11 For AHB and Tianjin datasets, the SDCS model demonstrates
ABLATION EXPERIMENT ON CIA DATASET . .
superior performance across most metrics when compared to
o other models. SRSF-GAN [76], MLFF-GAN, STFEDiff [77] also
ode] .

Date MAE RMSE SAM  SSIM achieve good performances. On the AHB dataset, the SAM
€S NN Ada MAF metric is slightly inferior to that of SRSF-GAN [76]. Both
Vvooox x X 00950 00969 07031  0.7093 SRSF-GAN [76] and MLFF-GAN [7] achieve relatively good

00163 00188 00778  0.9004 T .

ot Vo VX x results, indicating that an appropriate generator, supplemented

v Vv Vv X 0.0171  0.0195  0.0807  0.8984 ’ . g PP p. g o pp .
v Y v v 00162 00186 00719  0.9093 by adversarial loss, holds potential for spatiotemporal image
J x « % 00907 00927 07319 0.6982 fusion. However, the training of GANSs is often plagued by
ost0 ¥V VX x 00151 00177 00775 08979 instability and mode collapse issues. STFDiff [77] incorpo-
VooV v x 0015500180 00788 08991 rates the noise injection and denoising strategy from diffusion
Vv vV 00139 00163 0.0681 09120 . . . .
models for spatiotemporal fusion, yet its sampling steps are
v X x x 00932 00951 07892 0.6764 . . dneed a substantial tof data t .
wiy vV % v 00153 0018 00772 08891 ime-consuming and need a substantial amount of data to train an
v v X 00159 00185 00787 0.8906 effective denoising model. In contrast to these models, the SDCS
V.V YV 001l 00166 00704 0.9024 method proposed in this article employs a hybrid architecture
vooox x x 00972 00991 07670  0.6835 that integrates both model-driven and data-driven approaches,
w2 Vo VX 001700 0019700709 0.8885 eliminating the need for adversarial structures, and achieves
v vV X 00167 00193 00710 08911 g et ’
v v Vv 00139 00165 0.0632 09015 better results than GAN-based and diffusion-based methods.
J  x « < 00940 00959 07478 0.6919 This further underscores the effectiveness of the proposed ap-

Mean vV VX x 00159 00185  0.0759  0.8940 proach. Noticeably, ECPW-STFN [50] does not performs as

v v Y X 00163 00188 00773 0.8948 . : p
well as other deep learning methods in all datasets in most
v v Vv 00145 00170 0.0684 0.9063 p g

Bold indicates the best.

dataset are easy to be classified into their right categories, so that
FSDAF [23] method can find their appropriate endmember in
spectral unmixing and then show more precise fusion results.

cases. We speculate that this may be due to the wavelet trans-
form not complementing the network architecture mentioned in
their article effectively. In contrast, the CS method combined
with PD-CNN proposed in this article, yields very promising
results. For deep learning methods, a network architecture needs
to be more suitable for spatiotemporal fusion to have better
performance.
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Visual results of 8 algorithms on CIA dataset. In each subgraph, the lower graph represents the Mean Absolute Error (MAE) map. (a) Real. (b) HR ¢;.

(c) FSDAF. (d) EDCSTFN. (¢) MLFF-GAN. (f) SRSF-GAN. (g) STFDiff. (h) ECPW-STEN. (i) GAN-STFM. (j) SDCS.

Spatiotemporal fusion as an ill-posed problem is difficult to
achieve good performance only using model-driven schemes and
handcraft features. For SDCS method, the CS reconstruction
provide a good initial estimation for fusion, at the same time
the second stage with plenty of parameters can well reduce
the prediction error of the CS model. Relatively speaking, the
overall performances of the bidirectional-driven method SDCS
are better than the both deep learning and nondeep learning
methods.

Table VI presents a comparison of the parameter count, com-
putational load (multiply—accumulate operations, MACs), and
inference time (seconds per image) across various deep learning
methods. MACs and inference time require the network to
process a 256 x 256 image 6 spectral bands. ECPW-STFN [50]
and EDCSTEFEN [42] have relatively fewer parameters, which
may be a direct cause of their suboptimal results. In comparison
to other high-performing networks such as MLFF-GAN [7] and
SRSF-GAN [76], SDCS has fewer parameters and a reduced
computational load. Our proposed method achieves relatively
superior performance with a lower parameter count and minimal
computational requirements. Regarding inference time, the first
phase of SDCS does not utilize GPU acceleration, resulting

in a significant time expenditure. Except for the STFDiff [77]
model, the inference time of all deep learning models is not much
different. The sampling process of STFDiff [77] inherently leads
to anotable lag in inference speed compared to the other models.

D. Qualitative Comparison

Fig. 8 (CIA dataset), Fig. 9 (LGC dataset), and Fig. 10 (Tianjin
dataset) are visual comparisons for different methods. Aided
by CS initial estimation and the design of MAF, the proposed
SDCS in most cases reconstructs fusion images by less errors.
Top Figs. 8(a), 9(a), and 10(a) are real images at the predicting
time. Top Figs. 8(b), 9(b), and 10(b) are images at the reference
time. Top Figs. 8(c)—(j), 9(c)—(d), and 10(c)—(j) show the local
images of results by false color (band 1, 2, and 3) from different
algorithms. At bottom of each subfigure shows the difference
map between real image at the reference time and real image at
the target time.

For the abruptly changed regions, most methods show ob-
vious errors, although all of them can reconstruct a large part
of features by fusion. In the white circle areas, SDCS also
predicts some wrong changes, but the wrong prediction is
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Fig. 9.

Visual results of 8 algorithms on LGC dataset. In each subgraph, the lower graph represents the mean absolute error (MAE) map. (a) Real. (b) HR ¢;.

(c) FSDAF. (d) EDCSTFN. (¢) MLFF-GAN. (f) SRSF-GAN. (g) STFDiff. (h) ECPW-STFN. (i) GAN-STFM. (j) SDCS.

greatly weakened due to the constraints of two stage recon-
struction. After CS reconstruction providing initial prediction,
the MAF can further determine the intensity when injecting
the features of the high-resolution image at reference time or
the features of the low-resolution image at the prediction time.
For GAN-STFM [46], because only two images are taken as
input, it is easy to retain the error caused by different sen-
sors so that as in Fig. 8(i) the white circle areas with abrupt
differences from the previous image will have greater predic-
tion errors. On the LGC, AHB and Tianjin dataset, the white
circle areas also show the similar performances as the CIA
dataset. In most cases, SDCS shows fewer errors where there
is abrupt changes between the prediction time and the reference
time.

For the smoothly or slightly changed regions, most of the
methods show good fusion results. In the red circle areas, for
example, in bottom Fig. 8, the red circle areas in the images are
close to dark blue, so it means that the change is very small. In
red circle areas, FSDAF [23] algorithm shows very less errors in

the bottom Fig. 9(c). But for other areas, the FSDAF [23] clas-
sification process for end-members does not adaptively change
with dynamic features, so the deviation in these areas will be
very obvious and this reduces its overall performances. We can
observe that, there are also some small errors in these areas
by the deep learning methods in bottom 8(c)—(j), 9(c)—(j), and
10(c)—(j), because deep learning method may rely too much on
the learned experiences. The prediction of MLFF-GAN [7] and
SRSF-GAN [76] in Fig. 9(a) and (f) errors are not so obvious.
SDCS in Figs. 8(j), 9(j), and 10(j) performs much better when
compared with other deep learning methods in slightly changed
regions.

For the some transition areas which are not so abruptly
changed but more serious than a slight changed, the perfor-
mances of different methods are quite different. For example,
in the areas between the red circle and white circle, SDCS often
shows fewer prediction errors, because the fusion for local and
global features benefits from the design of two stage SDCS. In
Fig. 8, FSDAF [23] in Fig. 8(c) is close to SDCS in Fig. 8(j).
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() @ (h)

Fig. 10. Visual results of 8 algorithms on Tianjin dataset. In each subgraph, the lower graph represents the MAE map. (a) Real. (b) HR ;.

(d) EDCSTEN. (e) MLFF-GAN. (f) SRSF-GAN. (g) STFDiff. (h) ECPW-STEN. (i) GAN-STFM. (j) SDCS.

In Figs. 9 and 10, SRSF-GAN [76] and MLFF-GAN [7] are
close to SDCS. We believe that the CS initial estimation and
MAF postprocessing all take into positive effects in the fusion
of these areas.

Overall, SDCS performs better in visual on all datasets when
compared with other methods.

E. Ablation Experiments

Ablation experiments encompass two aspects: First, the ab-
lation of network components, including the effectiveness of
Adaln and MAF. Second, the ablation of methods of the initial
phase, i.e., comparing the initial results generated by other
methods with the CS-based approach proposed in this article.

1) Ablation of Network Components: There were four ab-
lation experiments: 1) one stage only with CS reconstruction
Fig. 11(g); 2) two stage by CS+CNN but without Adaln and
MAF [Fig. 11(h)]; 3) two stage by CS+CNN+Adaln but with
out MAF [Fig. 11(i)]; 3) complete model in which CS, CNN,
AdalN, and MAF are all added [Fig. 11(j)]. The results for the
four stages are listed in Tables III and IV. In the CS stage, there
will be a relatively significant error, as this stage focuses more
on the reconstruction of spatial information, while the spectral
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TABLE IV
ABLATION EXPERIMENT ON LGC DATASET
Model
Date MAE RMSE SAM  SSIM
CS CNN Ada MAF
Vv X x X 0.0818  0.0840  0.6520 0.7152
o129 Y Vv X X 0.0275  0.0299  0.1280  0.8795
Vv Vv v X 0.0292  0.0317  0.1398  0.8641
Vv Vv Vv v 00166 0.0190 0.0765 0.9114
Vv X x X 0.0835  0.0854  0.6623  0.7299
o v Vv x X 0.0243  0.0263  0.1344  0.9047
Vv Vv Vv X 0.0245  0.0267  0.1288  0.8900
Vv Vv Vv v 0.0139  0.0159  0.0609  0.9368
Vv X x X 0.0827  0.0844  0.6626  0.7496
a0 Y Vv x X 0.0219  0.0237 0.0980  0.9228
Vv Vv Vv X 0.0239  0.0258 0.1159  0.9049
Vv Vv Vv v 00125 0.0142  0.0556  0.9499
Vv X x X 0.0913  0.0929 0.6870  0.7362
w03V Vv X X 0.0214  0.0234  0.0970  0.9137
Vv Vv Vv X 0.0250  0.0272  0.1105  0.8944
Vv Vv Vv Vv 00136 0.0154 0.0548  0.9431
Vv X x X 0.0848  0.0866  0.6660  0.7327
Mean Y Vv X X 0.0238  0.0258  0.1143  0.9052
i Vv Vv X 0.0256  0.0279  0.1238  0.8884
Vv Vv Vv v 00142 0.0161 0.0619 09353

Bold indicates the best.
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Results of ablation experiments on CIA dataset. (a) Real image. (b) HR ¢1 (c) Stagel-LapSRN. (d) Stagel-LapSRN+Stage?2. (e) Stagel-ECPW-STFN

(f) Stage1-ECPW-STFN+Stage2 (g) Stagel-CS. (h) CS+CNN but without AdaIN and MAF. (i) CS+CNN+AdIN but without MAF. (j) Our complete model.

transfer is delegated to Adaln and MAF. Optimal results are
achieved when both Adaln and MAF are fully activated.

Fig. 11(g)—(j) are the visual comparison of four stage ablation
experiments for the CIA dataset. we can clearly observe that
when CS, CNN, AdalN, and MAF are added into the model in
turns and the errors will be reduced. The visual comparison of the
ablation experiment is basically consistent with the quantitative
analysis of the previous ablation experiment in Table III.

2) Ablation of the CS Stage: Table V and Fig. 11(c)-(j)
illustrates the impact of different first-stage methods on the
final outcomes. Among them, LapSRN [78] is a commonly
used super-resolution method embedded in OpenCV [79], and
ECPW-STEN [50] is one of the deep learning approaches. The
experimental results indicate that, although the error in the CS
first stage is relatively large [see Fig. 11(g)], by integrating the
proposed second-stage method, more superior results [see Fig.
11(j)] can be achieved compared to both LapSRN [78] and
ECPW-STEN [50]. LapSRN [78] is solely a super-resolution
method, and due to its poor initial spatial resolution [Fig. 11(c)],
the final outcomes [see Fig. 11(d)] are also not optimal.
Combined with Table II, it can be observed that the proposed

TABLE V
ABLATION EXPERIMENTS OF DIFFERENT STAGE I METHODS ON CIA AND LGC
DATASETS
CIA dataset LGC dataset
Stage 1

Date MAE RMSE SAM SSIM Date MAE RMSE SAM SSIM
LapSRN 0.0285 0.0318  0.1268  0.8024 0.0248  0.0281 0.1133  0.8205
ECPW-STEN ~ 04-01  0.0193  0.0220 0.0812  0.8830 01-29 0.0194 0.0218 0.0875  0.8998
CS (ours) 0.0162  0.0186  0.0719  0.9093 0.0166  0.0190  0.0765 0.9114
LapSRN 0.0276  0.0311 0.1258  0.8001 0.0210  0.0239  0.1015  0.8482
ECPW-STEN ~ 04-10  0.0189  0.0217 0.0813  0.8767 02-24  0.0156 0.0177  0.0779  0.9251
CS (ours) 0.0139  0.0163  0.0681  0.9120 0.0139  0.0159  0.0609  0.9368
LapSRN 0.0265  0.0299  0.1276  0.7900 0.0202  0.0230  0.0924  0.8584
ECPW-STEN ~ 04-17  0.0193  0.0225 0.0900 0.8435 03-02 0.0148 0.0166 0.0675 0.9382
CS (ours) 0.0141  0.0166  0.0704  0.9024 0.0125  0.0142  0.0556  0.9499
LapSRN 0.0266  0.0302  0.1168  0.7872 0.0193  0.0221 0.0821 0.8581
ECPW-STEN ~ 04-26  0.0185 0.0217 0.0742 0.8497 04-03 0.0156 0.0175 0.0607 0.9343
CS (ours) 0.0139  0.0165 0.0632  0.9015 0.0136  0.0154  0.0548  0.9431
LapSRN 0.0273  0.0308 0.1243  0.7949 0.0213  0.0243  0.0973  0.8463
ECPW-STEN ~ Mean  0.0190  0.0220  0.0817 0.8632 Mean 0.0163 0.0184 0.0734  0.9244
CS (ours) 0.0145  0.0170  0.0684  0.9063 0.0142  0.0161  0.0619  0.9353

The initial estimates will be used as inputs of Stage II. Bold indicates the best.

second-stage network can significantly enhance its performance
when combined with the input from ECPW-STEN [50], which
fully demonstrated the robustness of our second-stage method.
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TABLE VI
PARAMETERS, MACS, AND INFERENCE TIME OF SEVEN DEEP LEARNING

METHODS
Model Parameters MACs Time (s/img)
MLFE-GAN 8.7x10% 1.8 x 1010 0.0800
STEDiff 7.5x10% 4.3 x 1010 2.5208
SRSF-GAN 4.8 x 108 1.6 x 1011 0.1091
ECPW-STEN 6.9 x 105 3.1 x 1010 0.0435
EDCSTFN 2.8 x10° 1.8 x 1010 0.0568
GAN-STFM  4.18 x 108 3.8 x 100 0.0627

Stage 1: 138.68

SDCS (ours) 417 x 106 1.2 x 1010 ¥

Stage 2: 0.0952

VIII. CONCLUSION

In this article, we proposed a new SDCS method for spa-
tiotemporal fusion. To deal with the large resolution gap, un-
precise sampling matrix, and complex imaging condition, etc.,
the SDCS method is bidirectional and consists of two stages:
the CS observation stage and deep reconstruction stage. The
advantages from both CS observation model and deep feature
learning can be well utilized. The contributions of this work
mainly are: in the CS observation stage, we design a sensing
matrix satisfying both sampling mapping and RIP condition to
provide an initial fusion estimation; in the deep reconstruction
stage, we design a deep architecture with MAF to further im-
prove the fusion effect. In the experiments, both quantity and
quality comparisons were conducted for the proposed SDCS and
other methods (FSDAF, MLFF-GAN, EDCSTEN, etc.). SDCS
shows better performances in most cases on both abrupt change
areas and transition areas. At the same time, the effectiveness of
CS, AdalN, and MAF in SDCS were evaluated in the ablation
experiment. Overall, both of the contrast and ablation experi-
ments confirmed the advantages of SDCS when compared with
the other five methods on CIA, LGC, AHB, and Tianjin datasets.
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