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Reconstruction of Large-Scale Missing Data in
Remote Sensing Images Using Extend-GAN

Yongchuan Cui*, Peng Liu*, Bingze Song™, Lingjun Zhao, Yan Ma, and Lajiao Chen

Abstract— Numerous studies have been conducted on missing
data recovery in remote sensing images, such as cloud removal
and dead pixels restoration. Nevertheless, reconstructing con-
tinuous, extensive, and complete missing areas still poses a
significant challenge. In this letter, we propose a new architecture
named Extend-generative adversarial network (GAN), which
leverages only a low-resolution image with relaxed requirements
on spatial resolution and acquisition time as a condition to
reconstruct a high-resolution image with large-scale missing
areas. We equip Extend-GAN with learnable adaptive region
normalization (LARN) to adjust the intensity distribution of
pixels to reduce color distortion. We also introduce a new loss
function into the training process of Extend-GAN, namely the
structural similarity (SSIM)-based triplet loss, which helps to
preserve the between missing parts and known regions. Gaofen-2
and Landsat-9 image pairs are used to validate the proposed
method. Extend-GAN performs better when comprehensively
evaluated on visual effect, quantitative metrics, processing speed,
etc. Code is available at https://github.com/yc-cui/Extend-GAN.

Index Terms— Generative adversarial network (GAN), image
reconstruction, remote sensing images, triplet loss.

I. INTRODUCTION

ISSING data recovery in remote sensing images is

a classical yet challenging task. Many applications,
such as recovering the images of Landsat Enhanced Thematic
Mapper Plus (ETM+) (scan line corrector (SLC)-off), repair-
ing the occluded areas of clouds and shadows, or filling
the region in mosaic of large-scale images, etc., are often
regarded as missing data recovery problems. The nature of
these problems is to estimate the missing areas and fill the
vacancies with predicted pixels so that the remedied image
looks visually and semantically correct and the data usability
is also improved.

Early work on missing data recovery of remote sensing
images can be roughly divided into three subcategories [1],
[2], [3]: spatial-based, spectral-based, and temporal-based
methods. However, most of these methods [1], [2], [4], [5],
[6], [7] still face noteworthy challenges in practice. For
example, spectral-based methods often assume that complete
data is available for certain bands to reconstruct missing data
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Fig. 1. (a) Regions of interest of HR images are incomplete. LR provides
complementary information for the missing parts of HR. (b) Pairs of HR and
LR images with the same geographic location.

in other bands; temporal-based methods often require that
the acquisition time of reference images be close to the time
of target images. These methods are capable of producing
favorable outcomes when the reference data is reasonable.
However, in cases where the region of interest presents
extensive missing areas, it will severely reduce the applica-
bility of these models since obtaining such supplementary
data can be very difficult in real-world situations. Especially
in large-scale image mosaics, as in Fig. 1, there are often
large areas that need to be filled in. Therefore, it is essential
to investigate generating large missing areas using loose
reference information while not conflicting with the semantic
information of target data (such as hue and feature continuity).

In recent years, deep generative models, especially
generative adversarial networks (GANs), have recently made
considerable progress in remote sensing image recovery. Due
to its powerful data fitting ability, GANs can integrate multi-
source remote sensing data effectively (such as spatial-spectral
and spatiotemporal data, even heterogeneous data) [3], [8]
to reconstruct missing data more accurately. However, due
to the complexity and specialty of remote sensing data,
existing GAN-based methods still face challenges in feature
extraction and complementation. While most of these methods
[2], [6], [7] are effective in addressing small regions with
missing data, their performance is limited when it comes to
larger-scale continuous missing regions. They suffered from
blurred edges and artifacts in the reconstruction of large areas
(e.g., half of the image is completely missing), resulting in
visual and semantic discontinuity.
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Overview of Extend-GAN. The generator is an encoder—decoder architecture with skip connections. All convolution layers in the generator are

equipped with LARN. Different colored dashed boxes represent different losses calculated with specific inputs.

Achieving excellent reconstruction outcomes lies in a more
strategic utilization of the information inherency within both
the target and reference image. In this letter, as in Fig. 1,
we reconstruct the missing HR image by referring to the LR
image, since the corresponding LR data for missing regions
is intact and provides global information [refer to Fig. 1(a)].
The LR does not necessarily require being very close to
HR in capture time or resolution in practical applications.
We propose Extend-GAN, which takes LR images as condi-
tions to reconstruct HR images with large continuous missing
areas. Extend-GAN is equipped with a novel normalization
and is trained by a new loss function, which significantly
enhances the reconstruction quality. Our contributions can be
summarized as follows.

1) We proposed the architecture of Extend-GAN, which

utilizes LR images as references to effectively restore
HR remote sensing images with large continuous
missing areas.

2) A new normalization method, namely learnable adaptive
region normalization (LARN), is armed in Extend-GAN
to align statistics from missing areas to known areas.

3) To train Extend-GAN, we propose a new loss function,
namely SSIM-based triplet loss. This loss function pro-
vides more reasonable constraints to the structure of
reconstructed parts.

II. METHODOLOGY

In this section, we detailedly describe the proposed method.
Fig. 2 depicts an overview of the procedure. It showcases the
process from raw data through the generator to get output
and finally calculate the loss. Firstly, Section II-A presents the
network architecture. Then we elaborate on details of LARN
and triplet loss in Sections II-B and II-C, respectively.

A. Extend-GAN

1) Generator: The occluded or defective image is denoted
as I € RM™™*¢ and is formulated by the original image
O € R"™W*€ and a binary mask M € RM™*! (with value 1 for
unknown pixels, 0 otherwise)

I=0001-M) D

where © is the Hadamard product operator. Given a reference
image R € R™"™*¢ (which is an LR image located in the same

area in this letter), the objective of the generator is to learn a
mapping G where G(I | R) — O. The output is expected to
be a plausible image O € RM™Wx¢ which looks as identical as
possible to the ground truth (GT) O. It should be noted that
we do not use randomly irregular masks, but rather randomly
select half of the image to be the mask (as shown in the
mask in Fig. 2). This is because random irregular masks can
increase the difficulty of network training, and such masks
are not suitable in cases of large continuous complete missing
areas.

As demonstrated in Fig. 2, the generator G follows an
encoder-decoder style and takes advantage of U-Net [9] skip
connections structure to reconstruct pixel-level information.
G takes both I and R as inputs, which is implemented as
concatenation. Gated convolution [10] is introduced to each
layer in G to learn different soft masks for different channels
dynamically

Gating, ; = » > Wq -1
Feature; ; = Z ZWF i |

0;,; = ¢(Feature; ;) O o (Gating,»,j) (2)

where o (-) is sigmoid function and ¢(-) can be any activa-
tion function. W and Wy are two different convolutional
filters [10] for masks and features, respectively. Dilated gated
convolution is utilized in the innermost layers to expand the
receptive field to fuse more semantic information. To address
the color and content inconsistency problem, we present
LARN after the gated convolution operator (see Fig. 3), which
will be elaborated in Section II-B.

2) Discriminator: The discriminator D is mainly used for
adversarial training. The final output of D is a probability
in 0 — 1 to determine whether the current image is the
ground truth or not. Each convolutional layer of D applies
spectral normalization. The learning objective for D is given
as follows:

Lp = Eo[ReLU(1 — D(0))] + E¢[ReLU(1 + D(0))] (3)

where Eg represents taking the expectation with respect to O
of its expression, and ReLU is the rectified linear unit function.
For G, to fool D via generated images, its corresponding
learning objective is expressed as follows:

Loy = —Eg[ReLU(D(0))]. 4)
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Fig. 3. Tllustration of the LARN module.

B. Learnable Adaptive Region Normalization

Because the missing areas are large, there is a significant
discontinuity of color and textures between the filled part and
the known part. Previous research [11], [12] has demonstrated
that the mean and variation of features extracted from an
image are correlated with its semantics and texture. Inspired by
this, we propose an improved adaptive instance normalization
(AdaIN) [12] named LARN to automatically transfer the
texture style of a known region to the part to be completed.
As shown in Fig. 2, each block in G is armed with LARN,
which can be described as follows:

LARN(t,m) = (1 —m)Ox +m O ¥ (5)

where x and m are features and masks to be received by
LARN. X is defined as follows:

X — p(x, m)

o(x,m)

where y and B are trainable parameters and m = 1 — m.
u(-,+) and o(-,-) calculate the weighted mean and standard
deviation of the input elements, respectively, with m indicating
the weights of each pixel to be computed. Specifically, the
formulation of wu(-,-) and o (-, -) are given as follows:

H w
Doict Dojor Xij M
H w
€+ il D= Mij

2
Zinl Z?/:l (xi,j — mx, m)) te
€+ Zszl Z;/V:l mi j

where € is a small constant value used to maintain numerical
stability. H and W are the height and width of the input feature
map, respectively.

As shown in Fig. 3, LARN receives a feature map x and a
soft mask m € [0, 1] with the same size as the feature map
from the gated convolution. It was plugged into each block of
the generator in Fig. 2. The features of missing and known
regions can be calculated through x and mask m. Then, align
the mean and standard deviation of known regions of each
channel to unknown regions [(6)]. In order to promote the
adaptability of fusion to the spectrum difference between miss-
ing and known regions, two learnable parameters, y and S, are
added to LARN to allow the network to automatically learn
the ratio of mean and standard deviation shifts.

f=V'U(x,m)< >+ﬂ~u(x,m) (6)

w(x, m) = )

o(x,m) =

®)
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Fig. 4. Tllustration of triplet loss based on SSIM. It forces the reconstructed
image O close to the original image O but not too close to the reference
image R in terms of SSIM.

C. Triplet Loss Based on SSIM

Different from the task of super-resolution of the LR refer-
ence image, in the reconstruction of missing areas, the newly
generated features need to connect with the known region by
structure consistent, especially edges. With a common loss,
G does not learn the structural information of the original
part, resulting in unreasonable features (such as textures not
consistent with the original part after the completion). This is
supported by our experimental results below, which show that
the structural similarity (SSIM) between the filled area and the
reference image is always greater than it with the ground truth:
SSIM(O, R) > SSIM(O, O). For this reason, we propose a
triplet loss based on SSIM to guide the optimization of the
network to the right direction.

The triplet loss is based on metric learning, which was first
proposed in [13] as a loss for training face recognition models.
As shown in Fig. 4, it utilizes a distance-based loss function to
adjust the distance of embedding feature space of the positive
and negative sample pair. It aims to learn embeddings that are
closer for positive pairs and farther for negative ones. In this
letter, we define (O, O) as positive pair and (O, R) as negative
one. The triplet loss is expressed as follows:

Luipler = max (£(0,0) — f(R, 0) +a,0) 9)

where f(-,-) is defined as follows:

X Y)=1-SSIMX,Y). (10)
In (9), the distance in embedding space between
positive and negative samples can be controlled by

adjusting the hyper-parameter «. For a certain sample,
if f(0,0) — f(R,0) + @ < 0, that means the SSIM of
O and O, even if « is subtracted, is still larger than that of
O and R. In this situation, the loss after taking maximum
is 0, which means that this sample has learned the structural
information from the groundA truth, andA there is no need to
continue optimizing. If £(0, O)— f(R, O)4+« > 0, then there
is still room for optimization, and taking maximum of (9)
will result in a positive value of the loss, and we can continue
to optimize this portion to make it smaller or equal to O.
Besides Lagy and Lyipler, We adopt the £ distance between
O and O as the reconstruction loss, formulated as follows:

Lree = |0 = O] (11)
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TABLE I
QUANTITATIVE EVALUATION RESULTS OF DIFFERENT METHODS. BOLD TEXTS INDICATE THE BEST. |,: LOWER IS BETTER. 1: HIGHER IS BETTER

Metrics
Models Time(ms)]  Params(M)| MACs(G)J
PSNRT SSIM{ SSIM-Dt CCt  UQIt SAMJ ERGAS) MAE]
Shao et al. [6] 24.6481 0.7424 0.0448 0.6744  0.5169  0.0545 62.3787 0.0291 27.558 7.9726 50.161
Boundless [14]  25.4584  0.7768 0.0250 0.7264  0.5126  0.0509 56.2431 0.0269 26.947 10.719 35.805
MISF [15] 26.5151 0.7999 0.0419 0.7726  0.5168  0.0453 50.1720 0.0241 28.334 25.846 148.05
HAN [16] 26.5576  0.7915 0.0551 0.7824  0.5490  0.0430 50.3666 0.0232 28.147 7.6400 32.521
Ours 27.1135  0.8011 0.0766 0.8062 0.5696 0.0396 47.3426 0.0216 26.551 10.461 30.029
In summary, the joint loss for the generator is written as 0.08
follows: 0.06
0.04
L = haavLaav + A'tripletﬁtriplet + ArecLrec (12) n 0.02 WWW—
= 0
where Augv, Avipler, and Arec are the tradeoff parameters, and Z _om RS
. . —u. —— Shao et al.
we empirically set Aygy = 0.01, Ayipler = 0.1 and Aree = 1. ~0.04 Boundless(14]
~0.06 ——— MISF[15]
III. EXPERIMENTS ~0.08 —(H)AN““
A. Experimental Setup -0.10
. 100 400 700 1000 1300 1600 1900
1) Dataset: We use Gaofen-2 (GF2) HR images and Epoch
Landsat-9 (LC9) LR images to test the model. Examples of
lmage palrS Of the tl‘ailling data are ShOWIl in Flg. 1(b). After Flg 5. C()nvergence curve of SSIM-D. The upper is better.

registration, training image pairs were cropped to patches with
a size of 512 x 512 with the same geographic extent. A total
of 609 GF2-LC9 image pairs were used for training and
68 images for testing.

2) Implementation Details: All the experiments are per-
formed with one Nvidia GeForce RTX 4090 GPU. The
network architecture is implemented with PyTorch v1.13.1.
We use the Adam optimizer (with §; = 0.5 and 8, = 0.9)
to update the weights of the network iteratively. The initial
learning rate of the generator and discriminator are set to
le — 5 and le — 4, respectively. o in Lyipee is set to 0.1.
Models are trained with a minibatch size of 8 for 2400 epochs.
When training, image pairs with size 512 x 512 are randomly
cropped to 256 x 256, and then flip horizontally or vertically
with a probability of 0.5. We do not use extra optimization
tricks. All the models are trained under the same settings for
a fair comparison. The average value of the various metrics is
computed after 5 iterations of this procedure.

3) Metrics: For quantitative comparisons, the peak signal-
to-noise ratio (PSNR), the SSIM, the correlation coefficients
(CCs), the relative dimensionless global error in synthesis
index (ERGAS), the universal quality index (UQI), mean
absolute error (MAE), the spectral angle mapper (SAM) index
are employed as full-reference metrics. To assess whether the
model has successfully extracted the structural information
of GT, we use the term SSIM-D which is formulated as
SSIM-D(O, R, O) = SSIM(O, 0) — SSIM(R, O) to represent
the extent to which the predicted image is more similar to GT
compared to the reference image (the larger the indicator, the
better).

B. Experimental Results

The proposed method is compared with four advanced
models based on neural networks, including Shao et al. [6],

Boundless [14], MISF [15] and HAN [16]. To make a fair
comparison, we use the same data loader when conducting
experiments for these models.

1) Comparison of Model Performance: Table I shows the
evaluation results, where the proposed method outperforms
the other approaches on all indicators. The model proposed
by Shao et al. [6] yields relatively lower performance. This
suggests that this model may not be suitable for large missing
areas. The PSNR can be improved by 0.6 dB compared with
the second-best model. The convergence curve of SSIM-D in
masked areas is demonstrated in Fig. 5. With triplet loss and
LARN, images that are structurally more similar to GT are
significantly improved. This indicates that our model extracts
the structural information of GT, rather than simply replicating
the contents of the reference image to the missing areas.

Speed is also crucial for recovering large-scale missing data.
In Table I, our model exhibits the shortest time compared
with other models. In terms of the number of parameters
and computational cost, the proposed model is with a much
smaller size and floating point operations. Our full model has
10.461 M parameters and costs around 26.551 ms to process a
256 x 256 image.

The visual comparison of the testing data is presented in
Fig. 6. It can be observed that our model outperforms the
other models in synthesizing textures and edges, as evidenced
by more visually convincing results with fewer artifacts.
Conversely, the other models appear to neglect such structural
information in their synthesis process. According to the error
heatmap, it can be seen that our model has a smaller recon-
struction error, which further illustrates the superiority of the
proposed method.

2) Ablation Study: We verify the necessity of LARN and
triplet loss through ablation experiments. As is demonstrated
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Fig. 6.

(h)

Qualitative results of different methods. From left to right: (a) GT, (b) Masked GT, (c) Reference. Results: (d) Ours, (e) Error map of ours,

(f) HAN [16], (g) Error map of HAN [16], (h) MISF [15], (i) Error map of MISF [15], (j) Boundless [14], (k) Error map of Boundless [14], (1) Shao et al. [6],
and (m) Error map of Shao et al. [6]. Please zoomed-in view for detailed comparison.

TABLE I

ABLATION STUDY OF LARN AND TRIPLET LOSS.
J}: LOWER IS BETTER. 1: HIGHER IS BETTER

Modules Metrics
LARN  Lypjpiee  PSNRT  SSIMP  SSIM-Df  CCt  UQIt SAM| ERGAS| MAE|
X X 264625  0.7348 0.0536 0.7847  0.5633  0.0417 50.2091 0.0241
X v 265942 0.7950 0.0768 0.7965 0.5453  0.0442  50.7563  0.0230
v X 26.9266  0.7884 0.0695 0.7794  0.5621  0.0404 48.1925 0.0231
v v 27.1135  0.8011 0.0766 0.8062  0.5696  0.0396  47.3426  0.0216

in Table II, if only triplet loss is employed, SSIM and SSIM-D
will raise dramatically (SSIM + 6%, SSIM-D + 2%). When
only LARN is employed, most indicators also improve. When
both LARN and triplet loss are applied, all indicators are
further improved (e.g.,, PSNR + 0.7 dB).

IV. CONCLUSION

In this letter, a new GAN-based network, namely Extend-
GAN, is designed for large-scale missing information gen-
eration of remote sensing images. We propose LARN for
adaptive style transfer and a triplet loss based on SSIM to
preserve the structure of the original image. The image pairs
from Gaofen-2 and Landsat-9 satellites are used to construct
training and testing datasets to validate the proposed method.
Both the spatial resolution and spectral characteristics are dif-
ferent between the target and reference image, which reduces
some restrictions for proposed methods. The comprehensive
experiments, including an ablation study, are carried out to
compare our method with the other two methods. Simulated
and real-world scene reconstruction experiments all highlight
the superior speed and accuracy of our method.
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